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Motivation:
Why Bayes, Why Now
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Probably what we want

“Given any value (estimate of future payments) and our current 
state of knowledge, what is the probability that the final payments 
will be no larger than the given value?”

-- Casualty Actuarial Society (2004)
Working Party on Quantifying Variability in Reserve Estimates

I read this as a request for a Bayesian predictive distribution.
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Bayes gives us what we want

“Modern Bayesian methods provide richer information, with greater 
flexibility and broader applicability than 20th century methods.
Bayesian methods are intellectually coherent and intuitive. Bayesian 
analyses are readily computed with modern software and hardware.”

-- John Kruschke, Indiana University Psychology
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Why Bayes

• “A coherent integration of evidence from different sources”
• Background information 
• Expert knowledge / judgment  (“subjectivity” is a feature, not a bug)
• Other datasets (e.g. multiple triangles)
• Shrinkage, “borrowing strength”, hierarchical model structure – all coin of the realm
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Why Bayes

• “A coherent integration of evidence from different sources”
• Background information 
• Expert knowledge / judgment  (“subjectivity” is a feature, not a bug)
• Other datasets (e.g. multiple triangles)
• Shrinkage, “borrowing strength”, hierarchical model structure – all coin of the realm

• Rich output:  full probability distribution estimates of all quantities of interest
• Ultimate loss ratios by accident year
• Outstanding loss amounts
• Missing values of any cell in a loss triangle

• Model the process that generates the data 
• As opposed to modeling the data with “procedural” methods
• We can fit models as complex (or simple) as the situation demands
• Nonlinear growth patterns, trends, autoregressive, hierarchical, structure, …  

• Conceptual clarity
• Single-case probabilities make sense in the Bayesian framework
• Communication of risk:  “mean what you say and say what you mean”



10 Deloitte Analytics Institute © 2011 Deloitte LLP

Today’s Bayes 

Is our industry 
living up to its 
rich Bayesian 

heritage?



Bayesian Principles
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The Fundamental Bayesian Principle

“For Bayesians as much as for any other statistician, parameters are 
(typically) fixed but unknown. It is the knowledge about these 
unknowns that Bayesians model as random…

… typically it is the Bayesian who makes the claim for inference in a 
particular instance and the frequentist who restricts claims to 
infinite populations of replications.”

-- Andrew Gelman and Christian Robert
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The Fundamental Bayesian Principle

“For Bayesians as much as for any other statistician, parameters are 
(typically) fixed but unknown. It is the knowledge about these 
unknowns that Bayesians model as random…

… typically it is the Bayesian who makes the claim for inference in a 
particular instance and the frequentist who restricts claims to 
infinite populations of replications.”

-- Andrew Gelman and Christian Robert

Translation:
• Frequentist: Probability models the infinite replications of the data X

• Bayesian: Probability models our partial knowledge about 𝜃𝜃
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Updating Subjective Probability

• Bayes’ Theorem (a mathematical fact):

• Bayes’ updating rule (a methodological premise):  

• Let P(H) represents our belief in hypothesis H before receiving evidence E.

• Let P*(H) represent our belief about H after receiving evidence E.

• Bayes Rule:  P*(H) = Pr(H|E)
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Learning from data 

Suppose Persi tosses a coin 12 times and gets 3 heads.
What is the probability of heads on the 13th toss?
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Learning from data 

Suppose Persi tosses a coin 12 times and gets 3 heads.
What is the probability of heads on the 13th toss?

Frequentist analysis
𝑋𝑋𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝜃𝜃  𝐿𝐿 𝜃𝜃|𝐻𝐻 = 3,𝐵𝐵 = 12 = ∏𝜃𝜃3 1 − 𝜃𝜃 9  �̂�𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 1

4
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4

Thoughts
• “Parameter risk”:  12 flips is not a lot of data (“credibility concerns”)

• We’ve flipped other coins before… isn’t that knowledge relevant?

• It would be nice to somehow “temper” the estimate of ¼ or “credibility weight” 
it with some other source of information

• It would be nice not to just give a point estimate and a confidence interval,   
but say things like:  𝑃𝑃𝐵𝐵 𝐿𝐿 < 𝜃𝜃 < 𝑈𝑈 = 𝑝𝑝
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Learning from data 

Suppose Persi tosses a coin 12 times and gets 3 heads.
What is the probability of heads on the 13th toss?

Bayesian analysis
𝜃𝜃~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝛼𝛼,𝛽𝛽  𝜃𝜃~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝛼𝛼 + 3,𝛽𝛽 + 9
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Learning from data 

Suppose Persi tosses a coin 12 times and gets 3 heads.
What is the probability of heads on the 13th toss?

Bayesian analysis
𝜃𝜃~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝛼𝛼,𝛽𝛽  𝜃𝜃~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝛼𝛼 + 3,𝛽𝛽 + 9

Thoughts
• “Parameter risk”:  quantified by the posterior distribution

• Prior knowledge:   encoded in the choice of {𝛼𝛼,𝛽𝛽}

• Other data:  maybe Persi has flipped other coins on other days… we could 
throw all of this (together with our current data) into a hierarchical model

• Mean what we say and say what we mean:  𝑃𝑃𝐵𝐵 𝐿𝐿 < 𝜃𝜃 < 𝑈𝑈 = 𝑝𝑝 is a 
“credibility interval”… it’s what most people think confidence intervals say… 
(but don’t!)
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Prior distributions:  a feature, not a bug

“Your ‘subjective’ probability is not something fetched out of the 
sky on a whim; it is what your actual judgment should be, in view 
of your information to date and other people’s information.”

-- Richard Jeffrey, Princeton University
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Prior distributions:  a feature, not a bug

“Your ‘subjective’ probability is not something fetched out of the 
sky on a whim; it is what your actual judgment should be, in view 
of your information to date and other people’s information.”

-- Richard Jeffrey, Princeton University

• “Subjective” probability is really “judgmental” probability

• The choice of likelihood function is also “subjective” In this sense
• ODP (or other) distributional form
• Inclusion of covariates
• Trends 
• Tail factor extrapolations 
• …. 



Bayesian Computation
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An intractable problem

Before 1990:  this sort of thing was often viewed as a parlor trick 
because of the need to analytically solve high-dimensional integrals:
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Why Everyone Wasn’t a Bayesian

Before 1990:  this sort of thing was often viewed as a parlor trick 
because of the need to analytically solve high-dimensional integrals:
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MCMC makes it practical

After 1990:  The introduction of Markov Chain Monte Carlo
[MCMC] simulation to Bayesian practice introduces a    
“new world order”:

Now we can simulate Bayesian posteriors.
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Chains we can believe in

We set up random walks through parameter space that… in the limit… pass 
through each region in the probability space in proportion to the posterior 
probability density of that region.

• How the Metropolis-Hastings sampler generates a Markov chain {θ1, θ2, θ3,… }:

1. Time t=1:  select a random initial position θ1 in parameter space.
2. Select a proposal distribution p(θ) that we will use to select proposed random steps away from our 

current position in parameter space.
3. Starting at time t=2:  repeat the following until you get convergence:

a) At step t, generate a proposed θ*~p(θ)
b) Also generate u ~ unif(0,1)
c) If R > u then θt= θ*.  Else, θt= θt-1.

Step (3c) implies that at step t, we accept the proposed step θ* with 
probability min(1,R).
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Let’s go to the Metropolis

• So now we have something we can easily program into a computer. 

• At each step, give yourself a coin with probability of heads min(1,R) and flip it.

• If the coin lands heads move from θt-1 to θ*

• Otherwise, stay put.

• The result is a Markov chain (step t depends only on step t-1… not on prior 
steps).  And it converges on the posterior distribution.
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Random walks with 4 different starting points

• We estimate the lognormal 
density using 4 separate sets 
of starting values.

• Data:  50 random draws from 
lognormal(9,2).
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Random walks with 4 different starting points

• After 10 iterations, the lower 
right chain is already in the 
right neighborhood.
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Random walks with 4 different starting points

• After 20 iterations, only the 3rd

chain is still in the wrong 
neighborhood.
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Random walks with 4 different starting points

• After 50 iterations, all 4 chains 
have arrived in the right 
neighborhood.
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Random walks with 4 different starting points

• By 500 chains, it appears 
that the burn-in has long 
since been accomplished.

• The chain continues to 
wander.

The time the chain 
spends in a neighborhood 
approximates the 
posterior probability that 
(µ,σ) lies in this 
neighborhood. 
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In 3D

Recall the true lognormal 
parameters are:

µ=9 and σ=2
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Metropolis-Hastings results

• The MH simulation is gives 
consistent results:

• Only the final 5000 of the 10000 
MH iterations were used to 
estimate µ,σ
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Metropolis-Hastings results

Note the very rapid 
convergence despite 
unrealistic initial values.
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An easier way to get the same result

Call JAGS from within R
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Bayesian Loss Reserving
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Methodology:  sophisticated simplicity

“It is fruitful to start simply and complicate if necessary. That
is, it is recommended that an initial, sophisticatedly simple model be 
formulated and tested in terms of explaining past data and in 
forecasting or predicting new data. If the model is successful… it can 
be put into use. If not, [it] can be modified or elaborated to 
improve performance…”

-- Arnold Zellner, The University of Chicago 
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Methodology:  sophisticated simplicity

“It is fruitful to start simply and complicate if necessary. That
is, it is recommended that an initial, sophisticatedly simple model be 
formulated and tested in terms of explaining past data and in 
forecasting or predicting new data. If the model is successful… it can 
be put into use. If not, [it] can be modified or elaborated to 
improve performance…”

-- Arnold Zellner, The University of Chicago 

This is precisely what Bayesian Data Analysis enables us to do!
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Methodology:  sophisticated simplicity

“It is fruitful to start simply and complicate if necessary. That
is, it is recommended that an initial, sophisticatedly simple model be 
formulated and tested in terms of explaining past data and in 
forecasting or predicting new data. If the model is successful… it can 
be put into use. If not, [it] can be modified or elaborated to 
improve performance…”

-- Arnold Zellner, The University of Chicago 

Start with a simple model and then add structure to account for:
• Other distributional forms (what’s so sacred about GLM or exponential family??)
• Negative incremental incurred losses
• Nonlinear structure (e.g. growth curves)
• Hierarchical structure (e.g. fitting multiple lines, companies, regions)
• Prior knowledge
• Other loss triangles (“complement of credibility”)
• Calendar/accident year trends
• Autocorrelation 
• …
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Background:  hierarchical modeling from A to B

• Hierarchical modeling is used when one’s data is grouped in some important 
way.

• Claim experience by state or territory
• Workers Comp claim experience by class code
• Claim severity by injury type
• Churn rate by agency
• Multiple years of loss experience by policyholder.
• Multiple observations of a cohort of claims over time

• Often grouped data is modeled either by:
• Building separate models by group
• Pooling the data and introducing dummy variables to reflect the groups

• Hierarchical modeling offers a “middle way”.
• Parameters reflecting group membership enter one’s model through appropriately specified 

probability sub-models.
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Common hierarchical models

• Classical linear model
• Equivalently: Yi ~ N(α+βXi, σ2)
• Same α, β for each data point

• Random intercept model
• Where: Yi ~ N(αj[i]+βXi, σ2)
• And: αj ~ N(µα, σ2

α)
• Same β for each data point; but α varies by group j

• Random intercept and slope model
• Both α and β vary by group
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Simple example:  policies in force by region

• Simple example:  Change in 
PIF by region from 2007-10

• 32 data points
• 4 years
• 8 regions

• But we could as easily have 
80 or 800 regions

• Our model would not 
change

• We view the dataset as a 
bundle of very short time 
series
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Classical linear model

• Option 1:  the classical 
linear model

• Complete Pooling
• Don’t reflect region in the model 

design
• Just throw all of the data into 

one pot and regress

• Same  α and β for each 
region.

• This obviously doesn’t cut it.
• But filling 8 separate regression 

models or throwing in region-
specific dummy variables isn’t 
an attractive option either.

• Danger of over-fitting
• i.e. “credibility issues”
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Randomly varying intercepts

• Option 2:  random intercept 
model

• Yi = αj[i] + βXi + εi

• This model has 9 
parameters:
{α1, α2, …, α8, β}

• And it contains 4 
hyperparameters:
{µα, β, σα, σ}

• A major improvement
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Randomly varying intercepts and slopes

• Option 3:  the random slope 
and intercept model

• Yi = αj[i] + β j[i] Xi + εi

• This model has 16 
parameters:
{α1, α2, …, α8, 

β1, β2,…, β8}
• (note that 8 separate models 

also contain 16 parameters)

• And it contains 6 
hyperparameters:
{µα, µβ, σ, σα, σβ, σαβ}

It’d be the same number of 
hyperparameters if we had 80 
or 800 regions
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A compromise between complete pooling and no pooling

εβα ++= tPIF { } 8,..,2,1=++= k
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Complete Pooling
• Ignore group 

structure altogether

No Pooling
• Estimate a separate 

model for each group

Hierarchical Model
• Estimates parameters 

using a compromise 
between complete 
pooling and no pooling.
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A credible approach

• For illustration, recall the random intercept model:

• This model can contain a large number of parameters {α1,…,αJ,β}.

• Regardless of J, it contains 4 hyperparameters {µα, β, σ, σα}.

• Here is how the hyperparameters relate to the parameters:

Bühlmann credibility is a special case of hierarchical models.
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Shrinkage Effect of Hierarchical Models

• Illustration:  estimating workers 
compensation claim frequency 
by industry class.

• Poisson hierarchical model 
(aka “credibility model”)
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Validating the fully Bayesian hierarchical model

Roughly 90% of 
the claims from 
the validation time 
period fall within 
the 90% posterior 
credible interval.
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Case Study:
A Fully Bayesian Model

Collaboration with Wayne Zhang and Vanja Dukic
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Data

A garden-variety Workers Compensation Schedule P loss triangle:

• Let’s model this as a longitudinal dataset.
• Grouping dimension:  Accident Year (AY)

We can build a parsimonious non-linear model that uses random effects to 
allow the model parameters to vary by accident year.

Cumulative Losses in 1000's
AY premium 12 24 36 48 60 72 84 96 108 120 CL Ult CL LR CL res

1988 2,609 404 986 1,342 1,582 1,736 1,833 1,907 1,967 2,006 2,036 2,036 0.78 0
1989 2,694 387 964 1,336 1,580 1,726 1,823 1,903 1,949 1,987 2,017 0.75 29
1990 2,594 421 1,037 1,401 1,604 1,729 1,821 1,878 1,919 1,986 0.77 67
1991 2,609 338 753 1,029 1,195 1,326 1,395 1,446 1,535 0.59 89
1992 2,077 257 569 754 892 958 1,007 1,110 0.53 103
1993 1,703 193 423 589 661 713 828 0.49 115
1994 1,438 142 361 463 533 675 0.47 142
1995 1,093 160 312 408 601 0.55 193
1996 1,012 131 352 702 0.69 350
1997 976 122 576 0.59 454

chain link 2.365 1.354 1.164 1.090 1.054 1.038 1.026 1.020 1.015 1.000 12,067 1,543
chain ldf 4.720 1.996 1.473 1.266 1.162 1.102 1.062 1.035 1.015 1.000
growth curve 21.2% 50.1% 67.9% 79.0% 86.1% 90.7% 94.2% 96.6% 98.5% 100.0%
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Growth curves – at the heart of the model

• We want our model to 
reflect the non-linear nature 
of loss development.

• GLM shows up a lot in the 
stochastic loss reserving 
literature…

• … but are GLMs natural models 
for loss triangles?

• Growth curves (Clark 2003)
• γ = ultimate loss ratio
• θ = scale
• ω = shape (“warp”)

• Heuristic idea
• We judgmentally select a 

growth curve form
• Let γ vary by year (hierarchical)
• Add priors to the 

hyperparameters (Bayesian)
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An exploratory non-Bayesian hierarchical model

It is easy to fit non-Bayesian hierarchical 
models as a data exploration step.
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Adding Bayesian structure

• Our hierarchical model is “half-way Bayesian”
• On the one hand, we place probability sub-models on certain parameters
• But on the other hand, various (hyper)parameters are estimated directly from the data.

• To make this fully Bayesian, we need to put probability distributions on all
quantities that are uncertain.  

• We then employ Bayesian updating:  the model (“likelihood function”) together with 
the prior results in a posterior probability distribution over all uncertain quantities.

• Including ultimate loss ratio parameters and hyperparameters!
We are directly modeling the ultimate quantity of interest.

• This is not as hard as it sounds:  
• We do not explicitly calculate the high-dimensional posterior probability distribution.
• We do use Markov Chain Monte Carlo [MCMC] simulation to sample from the posterior.
• Technology:  JAGS (“Just Another Gibbs Sampler”), called from within R.
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Example (with Wayne Zhang and Vanja Dukic)

• Posterior credible intervals of incremental losses – by accident year
• Based on non-linear hierarchical growth curve model
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Example (with Wayne Zhang and Vanja Dukic)

• Posterior credible intervals of incremental losses – by accident year
• Based on non-linear hierarchical growth curve model
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Posterior distribution of aggregate outstanding losses

• Non-informative priors were used
• Different priors tested as a sensitivity 

analysis

• A full posterior distribution falls 
out of the analysis 

• No need for boostrapping, ad hoc 
simulations, settling for a point 
estimate with a confidence interval

• Use of non-linear (growth curve) 
model enables us to project 
beyond the range of the data

• Choice of growth curves affects the 
estimates more than the choice of 
priors!

• This choice “does the work of” a 
choice of tail factors
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Why Bayes

• “A coherent integration of evidence from different sources”
• Background information 
• Expert knowledge / judgment  (“subjectivity” is a feature, not a bug)
• Other datasets (e.g. multiple triangles)
• Shrinkage, “borrowing strength”, hierarchical model structure – all coin of the realm

• Rich output:  full probability distribution estimates of all quantities of interest
• Ultimate loss ratios by accident year
• Outstanding loss amounts
• Missing values of any cell in a loss triangle

• Model the process that generates the data 
• As opposed to modeling the data with “procedural” methods
• We can fit models as complex (or simple) as the situation demands
• Nonlinear growth patterns, trends, autoregressive, hierarchical, structure, …  

• Conceptual clarity
• Single-case probabilities make sense in the Bayesian framework
• Communication of risk:  “mean what you say and say what you mean”



A Parting Thought
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Parting thought:  our field’s Bayesian heritage

“Practically all methods of statistical estimation… are based on… the 
assumption that any and all collateral information or a priori knowledge is 
worthless. It appears to be only in the actuarial field that there has been an 
organized revolt against discarding all prior knowledge when an estimate is to 
be made using newly acquired data.”

-- Arthur Bailey (1950) 
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Parting thought:  our field’s Bayesian heritage

“Practically all methods of statistical estimation… are based on… the 
assumption that any and all collateral information or a priori knowledge is 
worthless. It appears to be only in the actuarial field that there has been an 
organized revolt against discarding all prior knowledge when an estimate is to 
be made using newly acquired data.”

-- Arthur Bailey (1950) 

... And today, in the age of MCMC, cheap 
computing, and open-source software...
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Parting thought:  our field’s Bayesian heritage

“Practically all methods of statistical estimation… are based on… the 
assumption that any and all collateral information or a priori knowledge is 
worthless. It appears to be only in the actuarial field that there has been an 
organized revolt against discarding all prior knowledge when an estimate is to 
be made using newly acquired data.”

-- Arthur Bailey (1950) 

“Scientific disciplines from astronomy to zoology are moving to Bayesian data 
analysis. We should be leaders of the move, not followers.”

-- John Kruschke, Indiana University Psychology (2010)

... And today, in the age of MCMC, cheap 
computing, and open-source software...



Appendix:
Some MCMC Intuition
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Metropolis-Hastings Intuition 

• Let’s take a step back and remember why we’ve done all of this.

• In ordinary Monte Carlo integration, we take a large number of independent 
draws from the probability distribution of interest and let the sample average of 
{g(θi)} approximate the expected value E[g(θ)].

• The Strong Law of Large Numbers justifies this approximation.

• But:  when estimating Bayesian posteriors, we are generally not able to take 
independent draws from the distribution of interest.

• Results from the theory of stochastic processes tell us that suitably well-behaved 
Markov Chains can also be used to perform Monte Carlo integration.
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How do we know this algorithm yields reasonable approximations?

• Suppose our Markov chain θ1, θ2, … with transition matrix P satisfies some 
“reasonable conditions”:

• Aperiodic, irreducible, positive recurrent (see next slide) 
• Chains generated by the M-H algorithm satisfy these conditions

• Fact #1 (convergence theorem): P has a unique stationary (“equilibrium”) 
distribution, π. (i.e. π=πP).  Furthermore, the chain converges to π.
• Implication: We can start anywhere in the sample space so long as we through out a sufficiently 

long “burn-in”.

• Fact #2 (Ergodic Theorem): suppose g(θ) is some function of θ.  Then:

• Implication:  After a sufficient burn-in, perform Monte Carlo integration by averaging over a suitably 
well-behaved Markov chain. 

• The values of the chain are not independent, as required by the SLLN.  
• But the Ergodic Theorem says we’re close enough to independence to get what we need.

Some Facts from Markov Chain Theory
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More on those “reasonable conditions”  on Markov chains:

• Aperiodic: The chain does not regularly return to any value θ in the state 
space in multiples of some k>1.

• Irreducible: It is possible to go from any state θi to any other state θj in some 
finite number of steps.

• Positive recurrent: The chain will return to any particular state θ with 
probability 1, and expected return time finite.

• Intuition:  
• The Ergodic Theorem tells us that (in the limit) the amount of time the chain spends in a particular 

region of state space equals the probability assigned to that region.
• This won’t be true if (for example) the chain gets trapped in a loop, or won’t visit certain parts of the 

space in finite time.

• The practical problem:  use the Markov chain to select a representative sample 
from the distribution π, expending a minimum amount of computer time.

Conditions for Ergodicity


	The Future of Loss Reserving�A Bayesian 21st Century
	Slide Number 2
	Motivation:�Why Bayes, Why Now
	Probably what we want
	Bayes gives us what we want
	Why Bayes
	Why Bayes
	Why Bayes
	Why Bayes
	Today’s Bayes 
	Bayesian Principles
	The Fundamental Bayesian Principle
	The Fundamental Bayesian Principle
	Updating Subjective Probability
	Learning from data 
	Learning from data 
	Learning from data 
	Learning from data 
	Learning from data 
	Prior distributions:  a feature, not a bug
	Prior distributions:  a feature, not a bug
	Bayesian Computation
	An intractable problem
	Why Everyone Wasn’t a Bayesian
	MCMC makes it practical
	Chains we can believe in
	Let’s go to the Metropolis
	Random walks with 4 different starting points
	Random walks with 4 different starting points
	Random walks with 4 different starting points
	Random walks with 4 different starting points
	Random walks with 4 different starting points
	In 3D
	Metropolis-Hastings results
	Metropolis-Hastings results
	An easier way to get the same result
	Bayesian Loss Reserving
	Methodology:  sophisticated simplicity
	Methodology:  sophisticated simplicity
	Methodology:  sophisticated simplicity
	Background:  hierarchical modeling from A to B
	Common hierarchical models
	Simple example:  policies in force by region
	Classical linear model
	Randomly varying intercepts
	Randomly varying intercepts and slopes
	A compromise between complete pooling and no pooling
	A credible approach
	Shrinkage Effect of Hierarchical Models
	Validating the fully Bayesian hierarchical model
	Case Study:�A Fully Bayesian Model��Collaboration with Wayne Zhang and Vanja Dukic
	Data
	Growth curves – at the heart of the model
	An exploratory non-Bayesian hierarchical model
	Adding Bayesian structure
	Example 	(with Wayne Zhang and Vanja Dukic)
	Example 	(with Wayne Zhang and Vanja Dukic)
	Posterior distribution of aggregate outstanding losses
	Why Bayes
	A Parting Thought
	Parting thought:  our field’s Bayesian heritage
	Parting thought:  our field’s Bayesian heritage
	Parting thought:  our field’s Bayesian heritage
	Appendix:�Some MCMC Intuition
	Metropolis-Hastings Intuition 
	Some Facts from Markov Chain Theory
	Conditions for Ergodicity

