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THE FUTURE OF STATISTICS —
A BAYESIAN 21ST CENTURY

D. V. LINDLEY, University College London and University of lowa

The thesis behind this talk is very simple: the only good statistics is Bayesian
statistics. Bayesian statistics is not just another technique to be added to our
repertoire alongside, for example, multivariate analysis; it is the only method
that can produce sound inferences and decisions in multivariate, or any other
branch of, statistics. It is not just another chapter to add to that elementary text
you are writing; it 1s that text. It follows that the unigue direction for
mathematical statistics must be along the Bayesian road.
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Motivation:
Why Bayes, Why Now




Probably what we want

“Given any value (estimate of future payments) and our current
state of Kknowledge, what is the probability that the final payments

will be no larger than the given value?”
-- Casualty Actuarial Society (2004%)
Working Party on Quantifying Variability in Reserve Estimates

| read this as a request for a Bayesian predictive distribution.
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Bayes gives us what we want

“Modern Bayesian methods provide richer information, with greater
flexibility and broader applicability than 20th century methods.
Bayesian methods are intellectually coherent and intuitive. Bayesian

analyses are readily computed with modern software and hardware.”
-- John Kruschke, Indiana University Psychology

© 2011 Deloitte LLP
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Why Bayes

* “A coherent integration of evidence from different sources”
» Background information
» Expert knowledge / judgment (“subjectivity” is a feature, not a bug)
» Other datasets (e.g. multiple triangles)
» Shrinkage, “borrowing strength”, hierarchical model structure — all coin of the realm
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Why Bayes

* “A coherent integration of evidence from different sources”
» Background information
» Expert knowledge / judgment (“subjectivity” is a feature, not a bug)
» Other datasets (e.g. multiple triangles)
» Shrinkage, “borrowing strength”, hierarchical model structure — all coin of the realm

* Rich output: full probability distribution estimates of all quantities of interest
» Ultimate loss ratios by accident year
» Qutstanding loss amounts
» Missing values of any cell in a loss triangle
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Why Bayes

* “A coherent integration of evidence from different sources”
» Background information
» Expert knowledge / judgment (“subjectivity” is a feature, not a bug)
» Other datasets (e.g. multiple triangles)
» Shrinkage, “borrowing strength”, hierarchical model structure — all coin of the realm

* Rich output: full probability distribution estimates of all quantities of interest
» Ultimate loss ratios by accident year
» Qutstanding loss amounts
» Missing values of any cell in a loss triangle

* Model the process that generates the data
» As opposed to modeling the data with “procedural” methods
* We can fit models as complex (or simple) as the situation demands
* Nonlinear growth patterns, trends, autoregressive, hierarchical, structure, ...
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Why Bayes

“A coherent integration of evidence from different sources”
» Background information
» Expert knowledge / judgment (“subjectivity” is a feature, not a bug)
» Other datasets (e.g. multiple triangles)
» Shrinkage, “borrowing strength”, hierarchical model structure — all coin of the realm

Rich output: full probability distribution estimates of all quantities of interest
» Ultimate loss ratios by accident year
» Qutstanding loss amounts
» Missing values of any cell in a loss triangle

Model the process that generates the data
» As opposed to modeling the data with “procedural” methods
* We can fit models as complex (or simple) as the situation demands
* Nonlinear growth patterns, trends, autoregressive, hierarchical, structure, ...

Conceptual clarity
» Single-case probabilities make sense in the Bayesian framework
» Communication of risk: “mean what you say and say what you mean”
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Today’s Bayes

Tiexts in Statistical Science

Markov Chain
Monte Carlo

Stochastic Simulstion for Bayesian Inference

Dani Gamerman and Hedibert E Lopas
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Bayesian Principles



The Fundamental Bayesian Principle

“For Bayesians as much as for any other statistician, parameters are
(typically) fixed but unknown. [t is the knowledge about these
unknowns that Bayesians model as random...

. typically it is the Bayesian who makes the claim for inference in a
particular instance and the frequentist who restricts claims to

infinite populations of replications.”
-- Andrew Gelman and Christian Robert
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The Fundamental Bayesian Principle

“For Bayesians as much as for any other statistician, parameters are
(typically) fixed but unknown. [t is the knowledge about these
unknowns that Bayesians model as random...

. typically it is the Bayesian who makes the claim for inference in a
particular instance and the frequentist who restricts claims to

infinite populations of replications.”
-- Andrew Gelman and Christian Robert

Translation:
* Frequentist: Probability models the infinite replications of the data X

e Bayesian: Probability models our partial knowledge about 6
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Updating Subjective Probability

Bayes’ Theorem (a mathematical fact):

Pr(H AE) Pr(E|H)Pr(H)
Pr(E) Pr(E)

Bayes’ updating rule (a methodological premise):

Pr(H |E) =

Let P(H) represents our belief in hypothesis H before receiving evidence E.

Let P*(H) represent our belief about H after receiving evidence E.

Bayes Rule: P*(H) = Pr(H|E)

Pr(H) - Pr(H |E)
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Learning from data

Suppose Persi tosses a coin 12 times and gets 3 heads.
What is the probability of heads on the 13% toss?
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Learning from data

Suppose Persi tosses a coin 12 times and gets 3 heads.
What is the probability of heads on the 13% toss?

Frequentist analysis
X;~iqBern(6) = L(O|H=3,n=12)=[]0°(1-6)° 2> Oy =
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Learning from data

Suppose Persi tosses a coin 12 times and gets 3 heads.
What is the probability of heads on the 13% toss?

Frequentist analysis
X;~iqBern(6) = L(O|H=3,n=12)=[]0°(1-6)° 2> Oy =

Thoughts
» “Parameter risk”: 12 flips is not a lot of data (“credibility concerns”)

» We've flipped other coins before... isn’t that knowledge relevant?

* It would be nice to somehow “temper” the estimate of ¥4 or “credibility weight”
it with some other source of information

* It would be nice not to just give a point estimate and a confidence interval,
but say things like: Pr(L< 68 <U) =p
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Learning from data

Suppose Persi tosses a coin 12 times and gets 3 heads.
What is the probability of heads on the 13% toss?

Bayesian analysis
0~Beta(a,f) = O~Beta(a+3,8+9)
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Learning from data

Suppose Persi tosses a coin 12 times and gets 3 heads.
What is the probability of heads on the 13% toss?

Bayesian analysis
0~Beta(a,f) = O~Beta(a+3,8+9)

Thoughts
» “Parameter risk”: quantified by the posterior distribution

 Prior knowledge: encoded in the choice of {«a, 5}

« Other data: maybe Persi has flipped other coins on other days... we could
throw all of this (together with our current data) into a hierarchical model

 Mean what we say and say what we mean: Pr(L< 0 <U)=pisa
“credibility interval”... it's what most people think confidence intervals say...
(but don’t!)
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Prior distributions: a feature, not a bug

“Your ‘subjective’ probability is not something fetched out of the
sky on a whim; it is what your actual judgment should be, in view

of your information to date and other people’s information.”
-- Richard Jeffrey, Princeton University
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Prior distributions: a feature, not a bug

“Your ‘subjective’ probability is not something fetched out of the
sky on a whim; it is what your actual judgment should be, in view

of your information to date and other people’s information.”
-- Richard Jeffrey, Princeton University

» “Subjective” probability is really “judgmental” probability

* The choice of likelihood function is also “subjective” In this sense
* ODP (or other) distributional form

Inclusion of covariates

Trends

Tail factor extrapolations
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Bayesian Computation



An intractable problem
Before 1990: this sort of thing was often viewed as a parlor trick
because of the need to analytically solve high-dimensional integrals:

f (X |0)7(6)
j f (X |<9)7r(9)d0

feY|X)= jf(Y|9)f(9|X)d9 jf(Y|9)

£(X|0)7(6)

f
61%)= [t(x10)z(0)do
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Why Everyone Wasn’t a Bayesian
Before 1990: this sort of thing was often viewed as a parlor trick
because of the need to analytically solve high-dimensional integrals:

f(X |0)z(6)
j f(X |0)z(0)do

(Y [X)=[ (Y [0)F(©@]X)do=]T(Y]0)

Why Isn’t Everyone a Bayesian?
B. EFRON*

Originally a talk delivered at a conference on Bayesian
statistics, this article attempts to answer the following ques-
tion: why is most scientific data analysis carried out in a
non-Bayesian framework? The argument consists mainly of

some practical examples ayes-

ian approach is difficult but Fisherian/frequentist solutions
are relatively easy. There is a brief discussion of objectivity

in statistical analyses and of the difficulties of achieving
objectivity within a Bayesian framework. The article ends

methods, which so far seem to have outweighed the philo-
sophical superiority of Bayesianism.
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MCMC makes it practical

After 1990: The introduction of Markov Chain Monte Carlo
[MCEMC] simulation to Bayesian practice introduces a
“new world order”:

Now we can simulate Bayesian posteriors.

Sampling-Based Approaches to Calculating
Marginal Densities

ALAN E. GELFAND AND ADRIAN F. M. SMITH*

© 1990 American Statistical Association
Journal of the American Statistical Association
June 1990, Vol. 85, No. 410, Theory and Methods
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Chains we can believe in

We set up random walks through parameter space that... in the limit... pass
through each region in the probability space in proportion to the posterior
probability density of that region.

» How the Metropolis-Hastings sampler generates a Markov chain {0,, 6,, 65,... }:

1. Time t=1: select a random initial position 0, in parameter space.

Select a proposal distribution p(0) that we will use to select proposed random steps away from our
current position in parameter space.

3. Starting at time t=2: repeat the following until you get convergence:
a) Atstept, generate a proposed 6*~p(0)

b) Also generate u ~ unif(0,1) * *
c) IfR>uthen6=06* Else, 6=0,;. R = f (9 | X) . p(et*—l | 0 )
F6.1X) p(@ 16.)

A\ 4

Step (3c) implies that at step ¢, we accept the proposed step 0* with
probability min(1,A).
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Let’s go to the Metropolis

So now we have something we can easily program into a computer.

At each step, give yourself a coin with probability of heads min(1,R) and flip it.

HX16)2(0) p(6,10)
F(X|6,1)7(6,,) p(Q* 16,1)

If the coin lands heads move from 6, , to 6*

Otherwise, stay put.

e The result is a Markov chain (step t depends only on step t-1... not on prior
steps). And it converges on the posterior distribution.
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Random walks with 4 different starting points

e \We estimate the |ogn0rma| First 5 Metropolis-Hastings Steps
density using 4 separate sets g | S .
of starting values. E»: %
[co T [ee]
e Data: 50 random draws from < © 4
lognormal(9,2). < | < |
(V) N
1 2 INn(X)—u g
f(xX|u,0)= exp(—z/) , 2=
Xo~ 27 2 o CEDO g4 °
@ 0 5 10 15 0 5 10 15
> round (Zx) [order () ] 8 ‘9'
[1] 50 210 443 561 58g 779
[7T] 1437 1544 2385 2480 27449 2764 © ©
[13] 2865 2947 3007 3440 3598 4226
[15] 4348 4770 4862 5411 6438 6682
[25] 7128 Telz 8555 9280 3897 3597 © ©o |
[31] 10486 11380 13630 17910 15014 25840 4
[37] 28737 35448 38379 50122 60746 TEEEE < < %/
[43] 94977 97028 98491 139625 143219 199s09
[49] 494978 a62327 4
N é N
o o
0 5 10 15 0 5 10 15
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Random walks with 4 different starting points

» After 10 iterations, the lower First 10 Metropolis-Hastings Steps
right chain is already in the S SR —
right neighborhood. E»: t/ 6}9
- 19 1 10
" (ol
0 5 10 15 0 5 10 15

1 ] 9]
4 6 L
AN é N 0
0 5 10 15 0 5 10 15
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Random walks with 4 different starting points

« After 20 iterations, only the 3 First 20 Metropolis-Hastings Steps
chgln is still in the wrong g Sp—
neighborhood. t/ iJ:
1 0
(V%
© Il4
17
<
20
5 10 15 0 5 10 15

1 | (9]
46
N é 20 N Lm

0 5 10 15 0 5 10 15
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Random walks with 4 different starting points

o After 50 iterations, all 4 chains First 50 Metropolis-Hastings Steps
have arrived in the right S Sp—
neighborhood. t/ iJ:
1 0
(V)
© © Il4
17
< < | Lﬁ _izzgﬂ
2 ﬁB
26 @)21%)
cU a4
Eo o
2 .
@ 0 5 10 15 0 5 10 15
. g,,\g . ]
28610
2 3
N £4 6\ E%) .
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Random walks with 4 different starting points

e By 500 chains, it appears
that the burn-in has long

since been accomplished.

 The chain continues to
wander.

The time the chain
spends in a neighborhood
approximates the
posterior probability that
(u,0) lies in this
neighborhood.
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In 3D

Recall the true lognormal

parameters are:

33

u=9 and oc=2
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Metropolis-Hastings results

 The MH simulation is gives
consistent results:

> applvi(coda, 2,
m sigma
9.077489 2.007377
> applvi(coda, 2, =d)
i sigma
0.2741341 0.2247070

mean)

e Only the final 5000 of the 10000
MH iterations were used to
estimate u,c
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Metropolis-Hastings results

: Metropolis-Hastings Simulation ¢
Note the very rapid P h

convergence despite

unrealistic initial values. . g
— _]
&
<
e —
o
o _|
=
(oo}
I I I I I I
0 2000 6000 10000
coda$mu Index
sigma
o o
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35 Deloitte Analytics Institute © 2011 Deloitte LLP



An easier way to get the same result

Call JHGS from within R Trace of mu Density of mu

o
o
—
~
T} —
o _|
0
o s 10 o |
model { 16 .
for (7 in 1:n) { 10 S _
%x[1] ~ dlnorm{ mu, tau ) ® 7 o
B : o |
mu ~ dnorm{Q, .0001) I I I I I I I I I I I
tau ~ dgamma(.0001, .0001) 6000 8000 10000 80 85 90 95 100
Iterations N =500 Bandwidth =
Trace of tau Density of tau
1. Empirical mean and standard deviation for each wariable,
plus standard error of the mean: g 1 o _]
o _|
Mean 5D Naiwve SE Time-series SE ©
mi 9.0830 0.28265 0.007298 0.006878 8 — ]
tau 0.2569% 0.05208 0.001345 0.001262 S |
<
2. {unantiles for each wvariable: 8 —
2.5% 25% 50% 75% 97.5% S - N
mu 8.5053 8.9020 9.0782 9.2648 9.6409 o -
tau 0.1653 0.2206 0.2535 0.2877 0.3769 b
o _| © 4 ' e
I I I I I I I I I I
6000 8000 10000 0.1 0.2 0.3 0.4
Iterations N = 500 Bandwidth =
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Bayesian Loss Reserving



Methodology: sophisticated simplicity

“It is fruitful to start simply and complicate if necessary. That

is, it is recommended that an initial, sophisticatedly simple model be
formulated and tested in terms of explaining past data and in
forecasting or predicting new data. If the model is successful... it can
be put into use. If not, [it] can be modified or elaborated to

improve performance...”
-- Arnold Zellner, The University of Chicago
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Methodology: sophisticated simplicity

“It is fruitful to start simply and complicate if necessary. That

is, it is recommended that an initial, sophisticatedly simple model be
formulated and tested in terms of explaining past data and in
forecasting or predicting new data. If the model is successful... it can
be put into use. If not, [it] can be modified or elaborated to

improve performance...”
-- Arnold Zellner, The University of Chicago

This is precisely what Bayesian Data Analysis enables us to do!
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Methodology: sophisticated simplicity

“It is fruitful to start simply and complicate if necessary. That

is, it is recommended that an initial, sophisticatedly simple model be
formulated and tested in terms of explaining past data and in
forecasting or predicting new data. If the model is successful... it can
be put into use. If not, [it] can be modified or elaborated to

improve performance...”
-- Arnold Zellner, The University of Chicago

Start with a simple model and then add structure to account for:
e Other distributional forms (what's so sacred about GLM or exponential family??)

» Negative incremental incurred losses

* Nonlinear structure (e.g. growth curves)

» Hierarchical structure (e.g. fitting multiple lines, companies, regions)
* Prior knowledge

e Other loss triangles (“complement of credibility”)

e Calendar/accident year trends

» Autocorrelation
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Background: hierarchical modeling from Ato B

» Hierarchical modeling is used when one’s data is grouped in some important
way.
» Claim experience by state or territory
» Workers Comp claim experience by class code
» Claim severity by injury type
* Churn rate by agency
» Multiple years of loss experience by policyholder.
» Multiple observations of a cohort of claims over time

» Often grouped data is modeled either by:
» Building separate models by group

» Pooling the data and introducing dummy variables to reflect the groups

» Hierarchical modeling offers a “middle way”.

» Parameters reflecting group membership enter one’s model through appropriately specified
probability sub-models.
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Common hierarchical models

Classical linear model Y. =a+ X, +¢
e Equivalently: Y;~ N(a+pX; ¢?)
» Same a, B for each data point

 Random intercept model
. Where: Y, ~ N(oyg+BX, o?) Yi=a;;+ PX +¢
e And: o ~ N(pg 6%,)

» Same [ for each data point; but o varies by group j

Random intercept and slope model
* Both o and 3 vary by group

2
. O O
Y, ~ N(a g + B,y Xi,0?) where | J|~N S 5o I ”
'BJ 'uﬂ O-aﬁ G/J’
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Simple example: policies in force by region

e Simple example: Change in

PIF by region from 2007-10 PIF Growth by Region
regionl region2 region3 ° regiond ¢
. [ J
e 32 data points s zoos zooe zoor a0 | 9% . .
- 4years L . .
+ 8regions e .
232 2272 7322 2422 y
e But we could as easily have 2400 e |, °
. e
80 or 800 regions 3
[
e Our model would not 2000
Change regions region6 region7 region8
2600
. [ J
* We view the dataset as a .
bundle of very short time 1
. [ L] [ ) [ J
series R . o
® (J
2200 ° ° o
e
o
ZQ)pO . . . . .
2007 2008 2009 2010 2007 2008 2009 2010
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Classical linear model

Option 1: the classical
linear model

Complete Pooling

» Don't reflect region in the model
design

e Just throw all of the data into
one pot and regress

Same o and f for each
region.

This obviously doesn’t cut it.

» But filling 8 separate regression
models or throwing in region-
specific dummy variables isn’t
an attractive option either.

» Danger of over-fitting
* i.e. “credibility issues”
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Y, ~ N(a+ pX,,c°)

PIF Growth by Region

2600

2300

N
® o

2000

regionl

region2

region3 °

region4 ¢

2600

2400

220

2000

region5

region6é

region7

region8

2007 2008 2009 2010

2007 2008 2009 2010
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Randomly varying intercepts

. . Yi~N(aj[i]+IBXi’O-2) aj~N(/Ua1(7§)
e Option 2: random intercept

model PIF Growth by Region
regionl region2 region3 ° regiond ¢
— 2600 o °
* Yi = oyt BX g . ¢
°
°
. 2300 o
e This model has 9 )
parameters:
220 [
{oq, 0y, ..., ag, B} . o o N
. . 2900 *
* And It Contalns 4 region5 region6é region7 region8
hyperparameters: N
{1e, By 04 O} .
] . 2400
* A major improvement o c .
) °
230 o o o
D)
o
2900 : : : : :
2007 2008 2009 2010 2007 2008 2009 2010
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Randomly varying intercepts and slopes

» Option 3: the random slope
and intercept model

*YizoyptBip Xt g

* This model has 16

parameters:
{o, 0y, ..., ag,
B1s Boy--es Pg}

* (note that 8 separate models
also contain 16 parameters)

* And it contains 6
hyperparameters:

{los Mgy Oy Oy Opy Oyt

It’d be the same number of
hyperparameters if we had 80
or 800 regions
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Hy
Hp
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B

2
(o3 o)
},ZJ , 2{ g
Cfaﬁ Cfﬂ

|

PIF Growth by Region

regionl

region2

N

region3

region4
®
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@

2600

2000
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region8
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2008 2009 2010

2007 2008 2009 2010
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A compromise between complete pooling and no pooling

PIF=a+ft+e PIF ="+ g+ )i,
Complete Pooling No Pooling
 Ignore group » Estimate a separate
structure altogether model for each group

Compromise

Hierarchical Model

» Estimates parameters
using a compromise
between complete
pooling and no pooling.

o o’ o
Yi~N(aj[i]+,b’j[i]-Xi,02) where F1~'N Ha > oy = e “f
'BJ Hp Oup Op
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A credible approach

For illustration, recall the random intercept model:

Yi~N(aj[i]+ﬂxi’62) 05]~N(ﬂa’0§)

This model can contain a large number of parameters {a,...,o;,[}.

Regardless of J, it contains 4 hyperparameters {u, B, ¢, 6 }.

Here is how the hyperparameters relate to the parameters:

n.

a;=2;-(Y;,-px)+(-2Z;)-u, where Z;= J

2
nj+0/2
O-a

Biihlmann credibility is a special case of hierarchical models.
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Shrinkage Effect of Hierarchical Models

Modeled Claim Frequency by !
Poisson Models: No Pooling and Simpl

* lllustration: estimating workers
compensation claim frequency
by industry class.

cteceecaaan.ald

e Poisson hierarchical model
(aka “credibility model”)

-
St ecacaa. ccen
e e

[
0.10

0.00 grand mean  0.05

Claim Frequency
© 2011 Deloitte LLP
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Validating the fully Bayesian hierarchical model

Year 7 Validation
Year-7 claims (red dot) and 90% posterior cre

83 . -
Roughly 90% of 4 —
the claims from 25
the validation time 16
period fall within 98
the 90% posterior 43
credible interval. 4%

OT

[EEY
N
N

[EY
N
(@)

O™
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Case Study:
A Fully Bayesian Model

Collaboration with Wayne Zhang and Vanja Dukic



Data

A garden-variety Workers Compensation Schedule P loss triangle:

Cumulative Losses in 1000's

AY premium 12 24 36 48 60 72 84 96 108 120 CLUt CLLR CLres
1988 2,609 404 986 1,342 1,582 1,736 1,833 1,907 1,967 2,006 2,036 2,036 0.78 0
1989 2,694 387 964 1,336 1,580 1,726 1,823 1,903 1,949 1,987 2,017 0.75 29
1990 2,594 421 1,037 1,401 1,604 1,729 1,821 1,878 1,919 1,986 0.77 67
1991 2,609 338 753 1,029 1,195 1,326 1,395 1,446 1,535 0.59 89
1992 2,077 257 569 754 892 958 1,007 1,110 0.53 103
1993 1,703 193 423 589 661 713 828 0.49 115
1994 1,438 142 361 463 533 675 0.47 142
1995 1,093 160 312 408 601 0.55 193
1996 1,012 131 352 702 0.69 350
1997 976 122 576 0.59 454

chain link 2.365 1.354 1.164 1.090 1.054 1.038 1.026 1.020 1.015 1.000 12,067

chain Idf 4720 1.996 1.473 1.266 1.162 1.102 1.062 1.035 1.015  1.000

growth curve 21.2% 50.1% 67.9% 79.0% 86.1% 90.7% 94.2% 96.6% 98.5% 100.0%

e Let’'s model this as a longitudinal dataset.
» Grouping dimension: Accident Year (AY)

We can build a parsimonious non-linear model that uses random effects to
allow the model parameters to vary by accident year,
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Growth curves — at the heart of the model

 We want our model to

» Growth curves (Clark 2003) 0§

* vy = ultimate loss ratio

reflect the non-linear nature Weibull and Loglogistic Growt
of loss development_ ° Heursitic: Fit Curves to Chain Ladder C
* GLM shows up a lot in the _g 1€ s
stochastic loss reserving )
literature... S \
c
* ... but are GLMs natural models 3 0-8 G(x | 0,6) N
for loss triangles? o X|w,0)=—"—""-
J S X +0°
=
<
>
S
>
O

G(x| w,0) =1—exp(-(x/6)")

» O =scale
04
* o = shape (“warp”)

e Heuristic idea 05
* We judgmentally select a — Loglogistic
growth curve form — Weibull
« Lety vary by year (hierarchical) 0

* Add prlors to the . 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180
hyperparameters (Bayesian)

Development Age
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Cumulative Loss

An exploratory non-Bayesian hierarchical model

It is easy to fit non-Bayesian hierarchical
models as a data exploration step. —

yi(tj):%*pi*(

Vi~ N(%Gyz)
gi(tj):pgi(tj—1)+5i(tj)

(]

t +0°

j+gi(tj)

Log-Loglistic Hierarchical Model (non-Bayesian)
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2 7 ,
'12 '36 '60 '84 '108 '12 '36 '60 '84 '108 '12 '36 '60 '84 '108 '12 '36 '60 '84 '108 '12 '36 '60 '84 '108
54 Deloitte Analytics Institute © 2011 Deloitte LLP

Development Time




Adding Bayesian structure

* Our hierarchical model is “half-way Bayesian”
* On the one hand, we place probability sub-models on certain parameters
» But on the other hand, various (hyper)parameters are estimated directly from the data.

» To make this fully Bayesian, we need to put probability distributions on all
guantities that are uncertain.

* We then employ Bayesian updating: the model (“likelihood function”) together with
the prior results in a posterior probability distribution over all uncertain quantities.
* Including ultimate loss ratio parameters and hyperparameters!
> We are directly modeling the ultimate quantity of interest.

e This is not as hard as it sounds:
* We do not explicitly calculate the high-dimensional posterior probability distribution.
* We do use Markov Chain Monte Carlo [MCMC] simulation to sample from the posterior.
» Technology: JAGS (“Just Another Gibbs Sampler”), called from within R.
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Example

o Posterior credible intervals of incremental losses — by accident year

(with Wayne Zhang and Vanja Dukic)

» Based on non-linear hierarchical growth curve model

90% Posterior Credible Int%

rvals: Log-logistic Hierarchical Bayes Model
e-fitting on All of the Data

1988 1989 1990 1991 1992
Upper 95%
. Median . * v
Lower 5% *
1993 1994 1995 1996 1997
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Example (with Wayne Zhang and Vanja Dukic)
o Posterior credible intervals of incremental losses — by accident year
» Based on non-linear hierarchical growth curve model

90% Posterior Credible Intervals: Log- Ioglstlc Hlerarchlcal Bayes Model
Add Chain Ladder Estimated Ultimates by A

2500 1 1988 1989 1990 1991 1992

2250 A
2000 . ™ « 0 a
1750 1 . . .

1500 1 a
1250
1000 { . . . o
750 4 - -

500 A Upper 95% 7
i * Median . ¢
2507 Lower 5%

2500 | 1993 1994 1995 1996 1997

2250
2000
1750 1
1500 1
1250 1
1000
750 &
500 .

250 1
L F . o L

12 36 60 84 108 132 156 180 12 36 60 84 108 132 156 180 12 36 60 84 108 132 156 180 12 36 60 B84 1068 132 156 180 12 36 60 64 108 132 156 180




Posterior distribution of aggregate outstanding losses

Non-informative priors were used Outstanding Loss Estimates at

 Different priors tested as a sensitivity Estimated Ultimate Losses Minus Losses to Dz
analysis At 120 Months

— === chain ladder estimate

A full posterior distribution falls
out of the analysis

» No need for boostrapping, ad hoc _,—r( —|—,_,__

simulations, settling for a point
estimate with a confidence interval

500 1000 1500 2000 2500 3000 3500 4000

At 180 Months

» Use of non-linear (growth curve)
model enables us to project
beyond the range of the data _H_(

» Choice of growth curves affects the
estimates more than the choice of
prlorsl At Ultimate

500 1000 1500 2000 2500 3000 3500 4000

* This choice “does the work of” a
choice of tail factors

. . . 500 1000 1500 2000 2500 3000 3500 4000
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Why Bayes

“A coherent integration of evidence from different sources”
» Background information
» Expert knowledge / judgment (“subjectivity” is a feature, not a bug)
» Other datasets (e.g. multiple triangles)
» Shrinkage, “borrowing strength”, hierarchical model structure — all coin of the realm

Rich output: full probability distribution estimates of all quantities of interest
» Ultimate loss ratios by accident year
» Qutstanding loss amounts
» Missing values of any cell in a loss triangle

Model the process that generates the data
» As opposed to modeling the data with “procedural” methods
* We can fit models as complex (or simple) as the situation demands
* Nonlinear growth patterns, trends, autoregressive, hierarchical, structure, ...

Conceptual clarity
» Single-case probabilities make sense in the Bayesian framework
» Communication of risk: “mean what you say and say what you mean”
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A Parting Thought



Parting thought: our field’s Bayesian heritage

“Practically all methods of statistical estimation... are based on... the
assumption that any and all collateral information or a priori knowledge is
worthless. It appears to be only in the actuarial field that there has been an

organized revolt against discarding all prior knowledge when an estimate is to

be made using newly acquired data.”
-- Arthur Bailey (1950)
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Parting thought: our field’s Bayesian heritage

“Practically all methods of statistical estimation... are based on... the
assumption that any and all collateral information or a priori knowledge is
worthless. It appears to be only in the actuarial field that there has been an

organized revolt against discarding all prior knowledge when an estimate is to

be made using newly acquired data.”
-- Arthur Bailey (1950)

. And today, 1In the age of MCMC, cheap
computing, and open-source software...
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Parting thought: our field’s Bayesian heritage

“Practically all methods of statistical estimation... are based on... the
assumption that any and all collateral information or a priori knowledge is
worthless. It appears to be only in the actuarial field that there has been an

organized revolt against discarding all prior knowledge when an estimate is to

be made using newly acquired data.”
-- Arthur Bailey (1950)

. And today, 1In the age of MCMC, cheap
computing, and open-source software...

“Scientific disciplines from astronomy to zoology are moving to Bayesian data
analysis. We should be leaders of the move, not followers.”
-- John Kruschke, Indiana University Psychology (2070)
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Appendix:
Some MCMC Intuition




Metropolis-Hastings Intuition

o Let’s take a step back and remember why we’ve done all of this.

 In ordinary Monte Carlo integration, we take a large number of independent
draws from the probability distribution of interest and let the sample average of
{9(0,)} approximate the expected value E[g(0)].

* The Strong Law of Large Numbers justifies this approximation.

e But: when estimating Bayesian posteriors, we are generally not able to take
independent draws from the distribution of interest.

» Results from the theory of stochastic processes tell us that suitably well-behaved
Markov Chains can also be used to perform Monte Carlo integration.
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Some Facts from Markov Chain Theory

How do we know this algorithm yields reasonable approximations?

e Suppose our Markov chain 64, 6,, ... with transition matrix P satisfies some

“reasonable conditions”:
» Aperiodic, irreducible, positive recurrent (see next slide)
* Chains generated by the M-H algorithm satisfy these conditions

 Fact #1 (convergence theorem): P has a unique stationary (“equilibrium”)
distribution, n. (i.e. n==nP). Furthermore, the chain converges to .

* Implication: We can start anywhere in the sample space so long as we through out a sufficiently
long “burn-in”.

 Fact #2 (Ergodic Theorem): suppose g(0) is some function of 6. Then:

%Zg(g(”) - [9(®)7(6)do =E[g(6)]

* Implication: After a sufficient burn-in, perform Monte Carlo integration by averaging over a suitably
well-behaved Markov chain.

* The values of the chain are not independent, as required by the SLLN.
e Butthe Er%

, ( odic Theorem says we're close enough to independence to get what we need.
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Conditions for Ergodicity

More on those “reasonable conditions” on Markov chains:

 Aperiodic: The chain does not regularly return to any value 6 in the state
space in multiples of some k>1.

* lIrreducible: Itis possible to go from any state 6; to any other state 6;in some
finite number of steps.

e Positive recurrent: The chain will return to any particular state 6 with
probability 1, and expected return time finite.

e |ntuition:

» The Ergodic Theorem tells us that (in the limit) the amount of time the chain spends in a particular
region of state space equals the probability assigned to that region.

* This won't be true if (for example) the chain gets trapped in a loop, or won't visit certain parts of the
space in finite time.

« The practical problem: use the Markov chain to select a representative sample
from the distribution rt, expending a minimum amount of computer time.
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