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• Observed phenomena are governed by underlying processes, 
with varying degrees of complexity

• A modeller often has to balance:
– Depth/detail
– Parsimony

• However, many common claims reserving methods do not:
– Explicitly consider the claims process
– Build model complexity from the “ground up”

Background
Motivation
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Trade-off

Risk of mistaking noise for signal



Mixed-effects (“hierarchical”) modelling

*Also known as a mixture of “random effects” and “fixed effects”

Cohorts

Parameters a “mixture” of 
those varying across cohort 

and those not*

Only estimate mean and s.d. of the variable parameters

Cohort P1 P2 P3 P4

1 P1,1

P2

P3,1

P4
2 P1,2 P3,2

3 P1,3 P3,3

4 P1,4 P3,4

Background
Parsimony
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• In 2008, Guszcza showed us how to apply nonlinear mixed effects 
models to loss reserving*:

Background
Loss reserving
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*Key idea: fit a nonlinear parametric curve to cumulative paid triangles in a mixed effects modelling framework



• Hierarchical models are used routinely in the pharmaceutical industry:

“Compartmental” Pharmacokinetic models

Background
Drug development

Pharmacodynamics growth curves 

Effect C! = 𝐺",$ C!

Central Peripheral

C1 C2
Drug input k12

k21

k10

Effect C! = 𝐺",$ C!

Central Peripheral

C1 C2
Drug input k12

k21

k10
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Meaningful parameters and 
extensibility

Can we apply this modelling framework to loss reserving?



Exposed 
to risk

Claims 
reported

Claims
paid

*ODEs:  a collection of simultaneous Ordinary Differential Equations

Methodology
Structural model

Compartmental model

• Claim “flows” between compartments governed by ODEs*

• Fit to outstanding and paid triangles
– Viewed together
– Simultaneously, capturing tails

Premiums 
Written
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Exposed 
to risk

Claims 
reported

Claims
paid

Methodology
Parameters

Parameters have natural interpretations

Reported loss ratio (“RLR”)

Rate of earning + reporting (“ker”)

Reserve robustness factor (“RRF”)

Rate of payment (“kp”)

RLR RRF

ker kp

ULR = RLR*RRF

Rates can optionally vary 
with development time

8Base model parameters for a single cohort

Premiums 
Written



*Also known as a mixture of “random effects” and “fixed effects”

Cohorts

Parameters a “mixture” of 
those varying across cohort 

and those not*

Cohort RLR ker RRF kp
1 RLR1

ker

RRF1

kp
2 RLR2 RRF2
3 RLR3 RRF3
4 RLR4 RRF4

Mixed-effects modelling

Methodology
Statistical framework
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Only estimate mean and s.d. of the variable parameters



Methodology
Data requirements (1)

Minimum data requirements

• Cumulative triangles
Outstanding claims Paid claims

*Provided approx. all premiums are written by Time 0

Exposed 
to risk

Claims 
reported

Claims
paid

Ultimate
premiums*
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Methodology
Data requirements (2)

Maximum data requirements

• Cumulative triangles
Outstanding claims Paid claimsWritten premiums*

*Required for UW year data

Exposed 
to risk

Claims 
reported

Claims
paid

Writing
patterns*
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Implementation in R
Why R?

*Other software packages also usable

• Nonlinear mixed effects models require complex solver algorithms:

• “f” is derived by solving ODEs:

Response y {OS,PD}
=

Non-linear function f of 
(Parameter vector ϕ and time t) 

+  
Noise w

dEX/dt = -kr · EX
dOS/dt = ker · RLR · EX - kp ·OS

dPD/dt = kp · RRF ·OS

Exposed
to risk

Claims 
reported

Claims
paid

R packages “nlmeODE” and “nlme” do the work*
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EX OS PD

We don’t have to worry about this!



Implementation in R
Case study

• Workers’ Comp Schedule P data
– Accident year cohorts (1988 – 1997)
– Earned premiums
– Paid and Incurred claims development

• Aims
– Fit compartmental model to data

– Improve model as necessary
– Extrapolate to time 10 and ultimate
– Compare results to hold out samples
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Implementation in R
Model 1

Estimate ln(parameters) s.t. cannot be < 0;

Cohort RLR ker RRF kp

1 RLR1

ker

RRF1

kp
2 RLR2 RRF2

3 RLR3 RRF3

4 RLR4 RRF4

Exposed 
to risk

Claims 
reported

Claims
paid

RLR RRF

ker kp

*

Parameters therefore assumed to be lognormal
14

Convergence time: 2.5 seconds 



Implementation in R
Model 1 Diagnostics

May consider “Jarque-Bera” and “Shapiro-Wilks” tests of residual normality 15



Implementation in R
Model 1 O/S fits
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***

*Population: model fit not allowing parameters to vary by cohort
**Individual: model fit allowing parameters to vary by cohort



Implementation in R
Model 1 paid fits
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Implementation in R
Model 1 incurred fits
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Implementation in R
Model 2

Exposed 
to risk

Claims 
reported

Claims
paid

RLR RRF

ker kp

t

Revise starting values and re-fit nlme model…

ker

kp

t

ker

Model 1Model 2
ker

19
Convergence time: 5.7 seconds 



Implementation in R
Model 2 Diagnostics

BIC is lower than Model 1 20



Implementation in R
Model 2 O/S fits
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Implementation in R
Model 2 paid fits

22



Implementation in R
Model 2 incurred fits
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Implementation in R
Model 2 O/S vs. hold out sample
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Implementation in R
Model 2 paid vs. hold out sample
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Implementation in R
Model 2 incurred vs. hold out sample

Under-reserving?
Late reporting?
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Implementation in R
Model 2 Summary (1)

Ulti = RLRi*RRFi*Premi = Paidi(t=∞)
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BCL projects over-reserving 
into the future
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Implementation in R
Model 2 Summary (2)

Model estimates less over reserving over time…
…but note under reserving in 1997!*

28*In practice: discuss with case handlers and test changes in RRF



Exposed 
to Risk

Claims 
reported Delay Claims

paid

Implementation in R
Increase complexity as necessary

t

kp

t

ker

Premiums

Motor PI (capped)* model

Avg. RRF = 134%

29
*Personal Injury; claims capped at £100k



*Intervals show how the entirety of a cohort may have developed if it occurred thousands of times

Implementation in R
Prediction Intervals

Use model distributional assumptions
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OR bootstrap

Process error
Parameter error
Sample error

ISSUE – bands are independent of claims history*

Condition simulations 
on latest incurred?



Future development
Autocorrelation

31

• “Repeated measures” models often exhibit autocorrelation
– An initial discrepancy in fit is likely to lead to subsequent discrepancy and so on…
– This can be an issue:

The “nlme” package contains a variety of correlation structures*
*& user is able to define custom structures



Future development
Bayesian extension

32

• A Bayesian extension is a natural next step
– A practitioner should be able to select prior distributions for RLR and RRF
– Potentially not as easy for ker and kp

• Key benefit: obtain a full posterior distribution of outcomes



Conclusions (1)
Notes from an experienced modeller*

*Mike K Smith - Pharmacometrician, Pfizer

• “Fitting non-linear mixed effects models can be a tricky (and 
frustrating) business”
– Parameterisation is a key issue
– If the model runs, it doesn’t mean that the answer is correct
– Method of fitting does make a difference

• “Model diagnostics are (even more) important for these models”

“There are some general rules for fitting these models…
…but experience is the best guide”

33



Conclusions (2)
Hierarchical growth curves for loss reserving

How does compartmental reserving compare?

34
*Zhang, Y., Dukic, V., Guszcza, J. (2012). “A Bayesian Nonlinear Model for Forecasting Insurance Loss Payments”

• Strengths of Guszcza’s method:
– Parsimonious
– Straightforward implementation [+ convergence]

– Independent method of reserving & measuring uncertainty*

• Weaknesses of Guszcza’s method:
– Parameters can be difficult to interpret [in an insurance context]

– Often unsuitable for incurred claims
– Subjective curve choice for tail

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-985X.2011.01002.x/abstract


Conclusions (3)
Compartmental reserving

Try it out for yourself!*

Exposed 
to Risk

Claims 
reported

Claims
paid

Premiums RLR RRF

ker kp
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• Strengths of compartmental reserving:
– Parsimonious yet extensible
– Interpretable parameters (including measure of reserve robustness)

– Independent method of reserving & measuring uncertainty (allows negative development)

• Weaknesses of compartmental reserving:
– Requires specific data “shapes”
– Sensitivity to starting values/convergence issues 
– Learning curve

*R scripts available on request: Jake.Morris@LibertyGlobalGroup.com
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Additional Slides
Data Model

*If using a writing/earnings pattern, “Dose” = premiums written/earned uniformly between tj and tj+1 [Define “Rate” column = Prems ÷ (tj+1 - tj)]

• Cohort cohort

• t development period (years)

• Claims cumulative O/S or paid at t

• Type O/S or paid claims indicator    {1,2}

• Dose premiums written at t*

• Cmt premium input compartment    {1}

Exposed 
to Risk

Claims 
reported

Claims
paid

Ultimate 
Premiums

RLR RRF

ker kp

Model form dictates dataset

Cohort t Claims Type Dose Cmt
1994 0 0 1 110784 1
1994 0 0 2 0 1
1994 1 62434 1 0 1
1994 1 11194 2 0 1
1994 2 46661 1 0 1
1994 2 26893 2 0 1
1994 3 32248 1 0 1
1994 3 38488 2 0 1
1994 4 24140 1 0 1
1994 4 45580 2 0 1

37



“Feathering” can help

RLR=fn(Intercept,kearned+reported,kpaid)

kpaid
kearned+reported

RRF(t) =yt/gn(RLR,kp,ker|t)

More complex models require 
judgement

38

Additional Slides
Parameterisation



Methodology
Structural model

Maximum data requirements (e.g. UW year cohorts)

• Cumulative triangles
Outstanding claims Paid claimsWritten premiums*

*Required for UW year data

Claims 
reported

Claims
paid

Claim 
events

Exposed 
to Risk

Writing patterns*

Earning patterns
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AY RLR kr/t RRF kp

1988 0.72 

5.94

0.72 

0.39

1989 0.78 0.70 
1990 0.81 0.83 
1991 0.73 1.03 
1992 0.79 0.81 
1993 0.76 0.69 
1994 0.74 0.75 
1995 1.02 0.90 
1996 1.15 0.99 
1997 1.09 1.01 

Additional Slides
Wkcomp estimated parameters
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Additional Slides
PI (capped) diagnostics



Additional Slides
Future development: miscellaneous
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• Model extensions
– How accurately can we capture the underlying process under this framework?

• Calendar year effects
– Dummy indicators, e.g. RRF(t) = {1,1,1,1,x,x,x}*RRF
– Principle: test significance of adding covariate

• Predictability study
– Compartmental reserving vs. other conventional methods

• Uncertainty study
– Compartmental reserving vs. other conventional methods


