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Background

Motivation

« Observed phenomena are governed by underlying processes,
with varying degrees of complexity

A modeller often has to balance:

- Depth/detall } Trade-off
— Parsimony

 However, many common claims reserving methods do not:
— Explicitly consider the claims process
— Build model complexity from the “ground up”

Risk of mistaking noise for signal
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Background

Parsimony

Mixed-effects (“hierarchical”’) modelling

Cohorts

Only estimate mean and s.d. of the variable parameters

*Also known as a mixture of “random effects” and “fixed effects”
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Background

Loss reserving

 In 2008, Guszcza showed us how to apply nonlinear mixed effects
models to loss reserving®:

Weibull and Loglogistic Growth Curves

e
o ]
o
Hierarchical Growth Curve Models for Loss Reserving
< |
James Guszcza, FCAS, MAAA S
Abstract
Hierarchical or multilevel modeling extends traditional GLM or non-linear models by giving certain of the model - |
their own ility sub-models. ‘modeling can be viewed as an extension of Bayesian e
credibility theory that allows one to build models for data that are grouped along a dimension containing multiple
levels. In particular, hierarchical modeling can be used to analyze longitudinal datasets containing multiple
observations for each of several subjects. A contention of this paper is that traditional loss reserving triangles are
most naturally regarded as longitudinal datasets. Nos-li ical models — known also as non-linear S
mixed effects models — therefore provide a natural and flexible framework in which to model loss development
across multiple accident years. The use of non-linear growth curves together with multilevel mods
techniques allows one to build models that are at once parsimonious and easy to interpret. Finally, because they

incorporate growth curves, such models obviate the need to specify tail factors. T T T T T T T T T T T T T T
Keywords: Stochastic loss reserving, hierarchical models, multilevel models, nonlinear mixed effects models, 12 36 60 84 108 132 156 180

owth models, sepeated measuzements, longitudinal data, Bayesian credibility, shrinkage, R. .
& P & 7e 7 2" Age in Months
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INTRODUCTION

Loss reserving theory and practice is undergoing a renaissance due to a recent proliferation of
stochastic reserving techniques. To cite but a few examples, recent authors have applied regression
analysis (Bamnett and Zehnwirth [1]), generalized linear models (England and Verrall [2]), loss
development growth curves together with maximum likelihood estimation (Clark [3]), and Bayesian
methods (Meyers [4]) to model loss develop data. i del 5| are

1 1 dsheet-based broi hod
ry or rr S °r L o) for

gEEse s

ultimate losses.

This paper will propose yet another statistical framework for modeling loss triangles: nonlinear
hierarchical models. These models are also commonly known as nonlinear mixed effects [NLME] models.
The contention of this paper is that this class of models provides a highly flexible and natural

*Key idea: fit a nonlinear parametric curve to cumulative paid triangles in a mixed effects modelling framework 5
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Background

Drug development

» Hierarchical models are used routinely in the pharmaceutical industry:

“Compartmental” Pharmacokinetic models

Central Peripheral
Drug input %2
Ci k C,
ky1 -
\ Meaningful parameters and
kao \ extensibility
d

Pharmacokinetics
Concentration vs.Time

AN

Time

Conc.

Can we apply this modelling framework to loss reserving?
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Methodology

Structural model

Compartmental model

Premiums

Written Exposed Claims Claims

to risk reported paid

« Claim “flows” between compartments governed by ODEs*

Outstanding Outstanding fit ———

 Fit to outstanding and paid triangles
— Viewed together
— Simultaneously, capturing tails

08 & Paid Claims ($000)

*ODEs: a collection of simultaneous Ordinary Differential Equations ;
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Methodology

Parameters

Parameters have natural interpretations

Premiums RLR

Written Exposed

RRF

Claims Claims

reported paid

to risk

Reported loss ratio (“RLR")
ULR = RLR*RRF

Rate of earning + reporting (“Ker )

Reserve robustness factor (“RRF”) Rates can optionally vary
with development time

Rate of payment ("ky")

Base model parameters for a single cohort .
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Methodology

Statistical framework

Mixed-effects modelling

Cohorts

Only estimate mean and s.d. of the variable parameters

*Also known as a mixture of “random effects” and “fixed effects”
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Methodology

Data requirements (1)

Minimum data requirements

Ultimate

bremiums* EXposed

Claims Claims

to risk reported paid

« Cumulative triangles

Outstanding claims Paid claims

*Provided approx. all premiums are written by Time 0 10
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Methodology

Data requirements (2)

Maximum data requirements

Writing

patterns* Exposed Clalms ClaImS

to risk reported paid

« Cumulative triangles

Written premiums* Outstanding claims Paid claims
p

*Required for UW year data

1"



(.
T~

P\ Liberty
X )
f' Specialty Markets

Implementation in R
Why R?

* Nonlinear mixed effects models require complex solver algorithms:

Response=y {OS,PD} L(B.,0130) =
Non-linear function f ‘?f HHJM pdf (" (@y)16”. B.0)- pdf 6" | 1.0)-db"
(Parameter Vec_:[_or ¢ and time t) We don’t have to worry about this!
Noise w

« “f”’ is derived by solving ODEs:

dEX/dt = -k, - EX EX 05 PD

— = d Clai Clai

dPD/dt =k, - RRF - OS

R packages “nlmeODE” and “nlme” do the work*

*Other software packages also usable 12
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Implementation in R

Case study

Incurred Claims ——1988
 Workers’ Comp Schedule P data S 1989
. & =t 1990
— Accident year cohorts (1988 — 1997) 2 1901
— Earned premiums S e

©
— Paid and Incurred claims development £ —199
2 e 1995
B L T T 1996
01 2 3 4 5 6 7 8 9 10 1997

Development Year

° A' Outstanding and Paid Claims
I m S Outstanding e—e—e Paid e—e—e Hold out samples o

0246 810 0246 810

— Fit compartmental model to data
— Improve model as necessary
— Extrapolate to time 10 and ultimate

— Compare results to hold out samples

OS & Paid Claims ($000)

00
602
50000 560000 50 py
o
o) o
o ©o s o5 i
%000 ©000 C0og %000

T T T T T 11T 1T T T 1T T 7 T T T T T T T T T 11
0246 810 0246 810

Development period

13
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Implementation in R
Model 1

R s
##3DEFINE BASE COMPARTMENTAL MODEL##%
R s

DEmodel <- list(

DiffEqg=list ( RLR
dyldt = ~ -ker*yl,
dy2dt = ~ ker*RLR*yl - k‘p"y2,} —_— Exposed

Claims Claims

to risk reported paid

dy3dt = ~ kp*RRF*y2),
ObsEg=list (

EX =~ 0,

0s = ~ y2,

PR = ~ y3),
St-ates=c ("yl"’ "yz "’ "ysll) ’
PaIm3=c ("kerl" "RLR"' "kp", "RRE‘") >
Init=1ist(0,0,0))

ReservingModel <- nlmeCDE (DEmodel,Data)

EEREFREREREREREIRENNS

###FIT BASE NLME MODEL### Random effects for RLR and RRF
1

nlmeModel <- nlme (Claims ~ ReservingModel (ker,RLR, kp,RRF,t,Cohort,Type), RLR1 RRF4

data = Data,

fixed = ker+RLR+kp+RRF ~ 1, } - 2 RLR2 RRF2

random = pdDiag(RLR + RRF ~ 1), r k= ko
groups = ~Cohort, 8 RLR3 RRF;

weights = varIdent (form = ~1 | Type), *

start=c(ker = log(1.5), RLR = log(l), kp = log(0.75), RRF = log(0.75)), 4 RLR4 RRF4

control=list (returnObject=TRUE, msVerbose=TRUE,
msMaxIter=10000,pnlsMaxItexr=10000,
pnlsTol=0.4,

verbose=TRUE) )

Convergence time: 2.5 seconds "

Estimate In(parameters) s.t. cannot be < 0; Parameters therefore assumed to be lognormal



Implementation in R
Model I Diagnostics

Densty

Resduals
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May consider “Jarque-Bera” and “Shapiro-Wilks” tests of residual normality

15
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Implementation in R
Model 1 O/S fits

Observed L Population* ------ Individual
0 246 810 0 2 46 810
I I N S S I I N A IS S [ S N U (U AN S M|
1988 1989 1990 1991 1992
. 604 n % o
o \\ \ . )
S 40 4 | e N -
£
w20 - =
£
g 0- -
O 1994 1995 1997
2
85
c
©
17
=]
O
| [ L | | I |
0 2 46 810
Development period
*Population: model fit not allowing parameters to vary by cohort 16

**Individual: model fit allowing parameters to vary by cohort
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Implementation in R

Model I paid fits
Observed L Population ------ Individual
0 246 810 0246 810
| N S I S I [ [ [ S [ O (I (N I S | ||
1988 1989 1990 1991 1992
80 — —
60 - e
40 —
20 —
0 — -

1995 1996 1997

Paid claims ($000)

0 246 810
Development period

17
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Implementation in R

Model I incurred fits

Observed ] Population ------ Individual
0 246 810 0 246 810
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ks 1996 1997
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. 20
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Development period

18



Implementation in R
Model 2

H# R R R
###DEFINE ALT. COMPARTMENTAL MODEL### Rate of Reporting increase with dev time
HE R R e

DEmodel <- list(

DiffEg=list ( RLR

dyldt = ~ -ker*t¥yl, .

dy2dt = ~ ker*t*RLR*yl - kpy2, By Exposed Claims

dy3dt = ~ Kp*RRF*y2), to risk reported

ObsEg=1ist ( Ker

EX =~ 0,

0s = ~y2,

PA =~ y3),
States:c(nylul "y2“/ lly3ll) , ker kp
ParmS=C ("ker", “RLR"[ llkpll, IIRRFII) , /
Init=1ist(0,0,0)) Model 2

ReservingModel <- nlmeODE (DEmodel,Data)

Liberty
Specialty Markets

RRF

Revise starting values and re-fit nime model...

Convergence time: 5.7 seconds

19



Implementation in R
Model 2 Diagnostics

Densty

Resduals
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BIC is lower than Model 1
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Implementation in R

Model 2 O/S fits
Observed ] Population ------ Individual ——
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Implementation in R

Model 2 paid fits
Observed ] Population ------ Individual
0 246 810
| N S (IS S N[ N N SN N I Y N I |
1988 1989 1990 1992
80 r
60 — v =
40 - —
20 —
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Paid claims ($000)
o
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Development period
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Implementation in R
Model 2 incurred fits

Observed Population ------ Individual

]
0246 810 0246 810
I 11 1 |
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Implementation in R
Model 2 O/S vs. hold out sample

Observed ] Model fit —— Hold out sample ®
0 246 810 0246 810
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Implementation in R
Model 2 paid vs. hold out sample

Observed ° Model fit —— Hold out sample °
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Implementation in R

Model 2 incurred vs. hold out sample

Observed ] Model fit —— Hold out sample @
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Implementation in R
Model 2 Summary (1)

Actual - Predicted Time 10 Incurred

N
()

B Model 2 BModel 2 Ult BIncurred Chain Ladder

BCL projects over-reserving
into the future

—
&)

RN
o

(@)

o
1

1988 1989 1990 1992 1993 1994 1995 1996 1997
Accident Year

Difference from Time 10 Incurred ($000)

1
(@]

Ult; = RLR;*RRF;*Prem; = Paid;(t=«)

27
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Implementation in R
Model 2 Summary (2)

Estimated Reported Loss Ratios and

Reserve Robustness Factors
140% -
—-a—RLR
120% 1 2 RRE

100%

Percentage
D (0]
o o
X X

40% A

20% 1

0%
1988 1989 1990 - 1992 1993 1994 1995 1996 1997
Accident Year

Model estimates less over reserving over time...

..but note under reserving in 1997!*
*In practice: discuss with case handlers and test changes in RRF 28
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Implementation in R

Increase complexity as necessary

Motor Pl (capped)* model

Premiums

Claims

Exposed Claims
paid

to Risk reported

Residual histogram Normal Q-Q Plot Actual vs Predicted

Avg. RRF =134%
"L : |

T T T T T T T T T T =4 T T T T T T T
-2 0 2 4 -3 2 0 1 2 3 0.0e+00 4.0e+06 8.0e+06 1.2e+07

I
1

Sample Quantiles

Residuals Theoretical Quantiles Predicted

*Personal Injury; claims capped at £100k »
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Implementation in R

Prediction Intervals

Use model distributional assumptions OR bootstrap

100,000
80,000
R Condition simulations
S— . ;
60,000 on latest incurred?
40,000 ror
Terror
20,000 ‘or
0

L L L L L L L L L
o - N w - (3] (-2} ~ =] = P -
o -

ISSUE - bands are independent of claims history*

*Intervals show how the entirety of a cohort may have developed if it occurred thousands of times

30
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Future development

Autocorrelation

» “Repeated measures” models often exhibit autocorrelation
— An initial discrepancy in fit is likely to lead to subsequent discrepancy and so on...

— This can be an issue:

Model 2: 1991 Residuals by Development Year
o/s . o

Residuals

4
Development period

The “nlme” package contains a variety of correlation structures*

*& user is able to define custom structures 51
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Future development

Bayesian extension

« A Bayesian extension is a natural next step
— A practitioner should be able to select prior distributions for RLR and RRF
— Potentially not as easy for k,, and k,

» Key benefit: obtain a full posterior distribution of outcomes

100,000

Y
04 06 08 10 1.2
I | | |

" n" u .| i e
| i i (”W"" 1l gl M i L'\“'M b M “,JM I“H L J# Nl ——

.

@

Density
0.?0 0.?5 0.|10 0.|15 0[20
Autocorrelation of
00 0.2 04 06 0.8 10

32
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Conclusions (1)

Notes from an experienced modeller*

» “Fitting non-linear mixed effects models can be a tricky (and
frustrating) business”

— Parameterisation is a key issue
— If the model runs, it doesn’t mean that the answer is correct
— Method of fitting does make a difference

» “Model diagnostics are (even more) important for these models”

“There are some general rules for fitting these models...
...but experience is the best guide”

*Mike K Smith - Pharmacometrician, Pfizer -
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Conclusions (2)

Hierarchical growth curves for loss reserving

» Strengths of Guszcza’s method:

Weibull and Loglogistic Growth Curves

— Parsimonious R —
— Straightforward implementationzgonver o5
— Independent methog df reserving &4n

...........
........
T g

. = ’ g :k
Weaknesses of Guszcza’s ynet 81 0.0)1—expl(/0)°)

— Parameters can be difficult t¢ interpret [in an insurance context]
o

— Often unsuitable for incurred claims

— Weibull
= = Loglogistic

1 1 1 T T T T 1 1 T T 1 1
12 36 60 84 108 132 156 180

How do« . npare?

Age in Months

*Zhang, Y., Dukic, V., Guszcza, J. (2012). “A Bayesian Nonlinear Model for Forecasting Insurance Loss Payments”

34


http://onlinelibrary.wiley.com/doi/10.1111/j.1467-985X.2011.01002.x/abstract

(.
T~

P\ Liberty
X )
f' Specialty Markets

Conclusions (3)

Compartmental reserving

« Strengths of compartmental reserving:
— Parsimo

Premiums Expgged , . Claims Claims
reported

velopment)

 Weaknesses of compgrtmental reserving:————

— Requires specific data™s apeg”” —

2,500

— Sensitivity to starting vZaOO(I)ues/ﬁopyngemu ISSUES

— Learning curve l /

1,000

500 = ::
1

oL
Sl
02 4

*R scripts available on request: Jake.Morris@LibertyGlobalGroup.com 55
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Additional Slides

Data <— Model

Model form dictates dataset

Ultimate
: RLR . RRF
SNy Exposed Claims
to Risk reported
Ker ko
Cohort t Claims Type Dose Cmt
1994 0 0 1 110784 1 * Cohort  cohort
1994 0 0 2 0 ! - t development period (years)
1994 1 62434 1 0 1
1994 1 11194 2 0 1 « Claims  cumulative O/S or paid at t
1994 2 46661 1 0 1
1994 2 26893 2 0 1 « Type O/S or paid claims indicator {1,2}
1994 3 32248 1 0 1
1994 3 38488 2 0 1 * Dose premiums written at t*
1994 4 24140 1 0 1 A
1994 4 45580 2 0 1 « Cmt premium input compartment {1}

*If using a writing/earnings pattern, “Dose” = premiums written/earned uniformly between t; and t.4 [Define “Rate” column = Prems =+ (tj+1 - tj)]
37
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Additional Slides

Parameterisation

“Feathering” can help

100,000 +

10,000 -

1,000 -

100 -

10

1

60,000 -
50,000 -|
40,000 -
30,000 -
20,000 -

10,000 -

RLR=fn ( Interce pt, kea rned+reported” kpaid)

- 100,000

= —In(o/s)

kpaid

2 4 6 8 10

RRF(t) =yt/gn(RLRl p’ erlt)

—Paid

10,000 -

1,000 -

100 4

\ ——In(o/s)
\
\\
\ k
\‘earned+reported
\\
\
\
0 2 4'1 6 8 1‘0

More complex models require

judgement

10
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Methodology

Structural model

Maximum data requirements (e.g. UW year cohorts)

Claims Claims

Writing patterns* Exposed

arming patterns to Risk reported paid

« Cumulative triangles

Written premiums* Outstanding claims Paid claims
p

*Required for UW year data

39
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Additional Slides

Wkcomp estimated parameters

e s || ]

1988  0.72 0.72
1989  0.78 0.70
1990 081 0.83
1991 073 103
20 g, 08 0.39
1993  0.76 0.69
1994 074 0.75
1995  1.02 0.90
1996  1.15 0.99

1997  1.09 101

40
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PI (capped) diagnostics

Residual histogram Normal Q-Q Plot Actual vs Predicted
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Future development: miscellaneous

* Model extensions

— How accurately can we capture the underlying process under this framework?

» Calendar year effects
— Dummy indicators, e.g. RRF(t) = {1,1,1,1,x,x,x}*"RRF
— Principle: test significance of adding covariate

* Predictability study
— Compartmental reserving vs. other conventional methods

* Uncertainty study
— Compartmental reserving vs. other conventional methods
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