Compartmental Reserving

a new reserving approach implemented in R

Jake Morris

29 June 2015

Agenda

- Background
- Methodology
- Implementation in R
- Future development
- Conclusions

Background Motivation

- Observed phenomena are governed by underlying processes, with varying degrees of complexity
- A modeller often has to balance:
 - Depth/detail
 Parsimony
 Trade-off
- However, many common claims reserving methods do not:
 - Explicitly consider the claims process
 - Build model complexity from the "ground up"

Risk of mistaking noise for signal

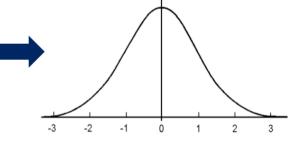
Background

Parsimony

Mixed-effects ("hierarchical") modelling

Cohorts

Parameters a "mixture" of those varying across cohort and those not*



Cohort	P ₁	P ₂	P ₃	P ₄
1	P _{1,1}		P _{3,1}	D
2	P _{1,2}	P ₂	P _{3,2}	
3	P _{1,3}		P _{3,3}	P_4
4	P _{1,4}		P _{3,4}	

Only estimate mean and s.d. of the variable parameters

Background Loss reserving

 In 2008, Guszcza showed us how to apply nonlinear mixed effects models to loss reserving*:

Hierarchical Growth Curve Models for Loss Reserving

James Guszcza, FCAS, MAAA

Abstract

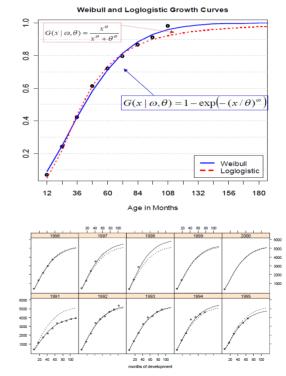
Herarchical or multilevel modeling extends traditional GLM or non-linear models by giving certain of the model parameters their own probability sub-models. Hierarchical modeling can be viewed as an extension of Bayesian credibility theory that allows one to build models for data that are grouped along a dimension containing multiple levels. In particular, hierarchical modeling can be used to analyze longitudinal datasets containing multiple levels. In particular, hierarchical modeling can be used to analyze longitudinal datasets containing multiple observations for each of several subjects. A contention of this paper is that traditional loss reserving timagles are most naturally regarded as longitudinal datasets. Non-linear hierarchical models – known also as non-linear mixed effects models – therefore provide a natural and flexible framework in which to model loss development across multiple accident years. The use of non-linear growth curves together with multiceel modeling techniques allows one to build models that are at once parsimonious and easy to interpret. Finally, because they incorporate growth curves, such models obviate the need to specify thal factors.

Keywords: Stochastic loss reserving, hierarchical models, multilevel models, nonlinear mixed effects models, growth models, repeated measurements, longitudinal data, Bayesian credibility, shrinkage, R.

1. INTRODUCTION

Loss reserving theory and practice is undergoing a renaissance due to a recent proliferation of stochastic reserving techniques. To cite but a few examples, recent authors have applied regression analysis (Barnett and Zehnwirth [1]), generalized linear models (England and Verrall [2]), loss development growth curves together with maximum likelihood estimation (Clark [3]), and Bayesian methods (Meyers [4]) to model loss development data. Statistical modeling techniques are increasingly supplementing or supplanting spreadsheet-based projection methods for estimating ultimate losses.

This paper will propose yet another statistical framework for modeling loss triangles: nonlinear bienarchical models. These models are also commonly known as nonlinear mixed effects [NLME] models. The contention of this paper is that this class of models provides a highly flexible and natural

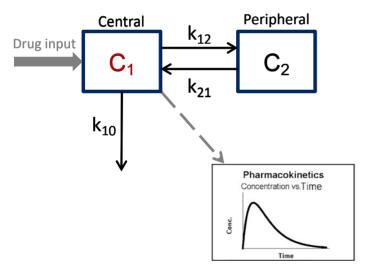


*Key idea: fit a nonlinear parametric curve to cumulative paid triangles in a mixed effects modelling framework

Background Drug development

• Hierarchical models are used routinely in the pharmaceutical industry:

"Compartmental" Pharmacokinetic models



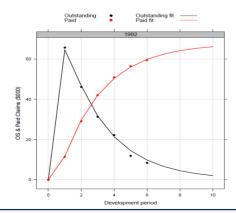
Can we apply this modelling framework to loss reserving?

Methodology

Compartmental model

Premiums Written Exposed to risk Claims reported Paid

- Claim "flows" between compartments governed by ODEs*
- Fit to outstanding and paid triangles
 - Viewed together
 - Simultaneously, capturing tails



Methodology

Parameters

Parameters have natural interpretations


```
Reported loss ratio ("RLR")
```

```
Rate of earning + reporting ("k<sub>er</sub>")
```

Reserve robustness factor ("RRF")

Rate of payment ("k_p")

$\mathbf{ULR} = \mathbf{RLR}^*\mathbf{RRF}$

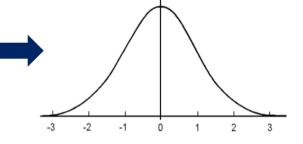
Rates can optionally vary with development time

Methodology Statistical framework

Mixed-effects modelling

Cohorts

Parameters a "mixture" of those varying across cohort and those not*



Cohort	RLR	k _{er}	RRF	k _p
1	RLR ₁		RRF_1	Ŀ
2	RLR_2	k _{er}	RRF_2	
3	RLR₃		RRF ₃	Kp
4	RLR_4		RRF_4	

Only estimate mean and s.d. of the variable parameters

Methodology Data requirements (1)

Minimum data requirements

• Cumulative triangles

Methodology Data requirements (2)

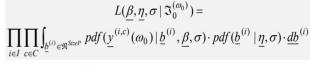
Maximum data requirements

• Cumulative triangles

Implementation in R Why R?

Nonlinear mixed effects models require complex solver algorithms:

Response y {OS,PD} = Non-linear function f of (Parameter vector ϕ and time t) + Noise w



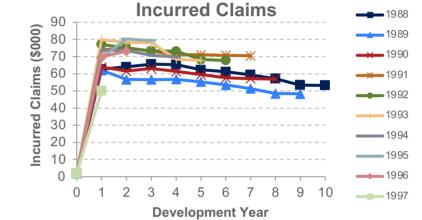
We don't have to worry about this!

• "f" is derived by solving ODEs:

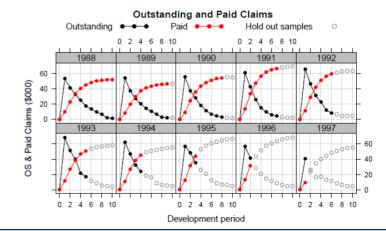
R packages "nlmeODE" and "nlme" do the work*

Implementation in R Case study

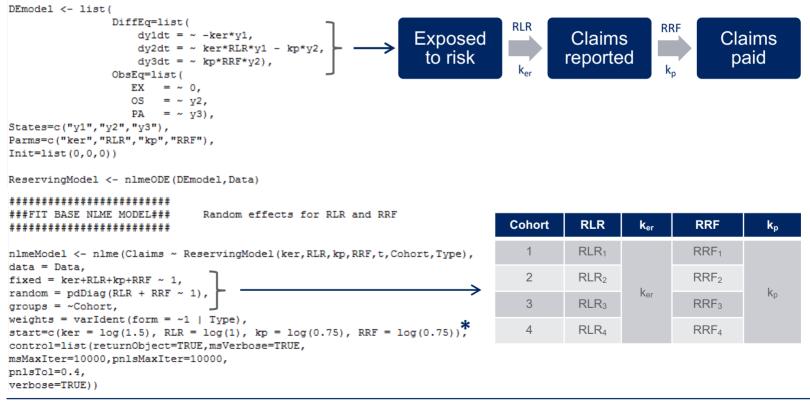
- Workers' Comp Schedule P data
 - Accident year cohorts (1988 1997)
 - Earned premiums
 - Paid and Incurred claims development



- Fit compartmental model to data
 - Improve model as necessary
- Extrapolate to time 10 and ultimate
- Compare results to hold out samples



Implementation in R Model 1



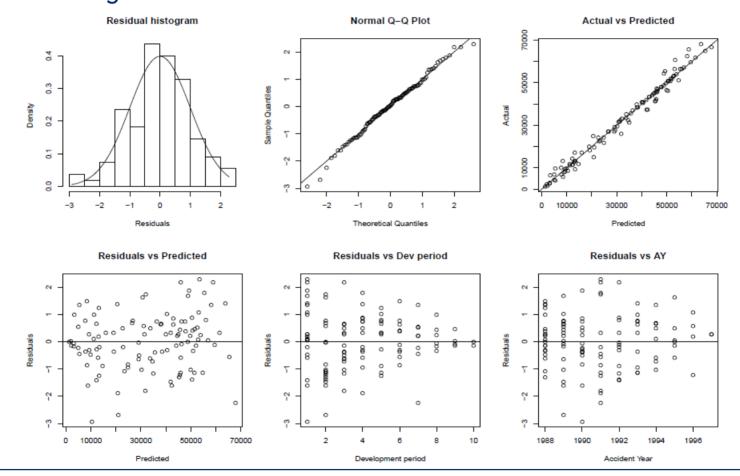
Convergence time: 2.5 seconds

Estimate In(parameters) s.t. cannot be < 0;

Parameters therefore assumed to be lognormal

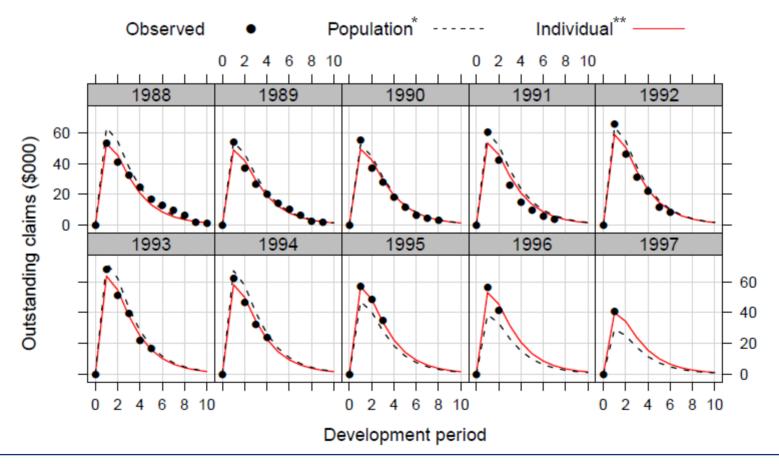
Liberty Specialty Markets

Implementation in R Model 1 Diagnostics



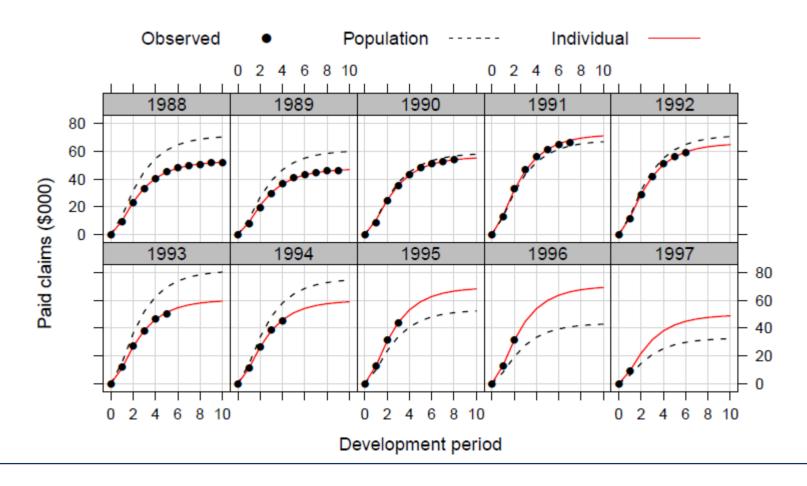
May consider "Jarque-Bera" and "Shapiro-Wilks" tests of residual normality

Implementation in R Model 1 O/S fits

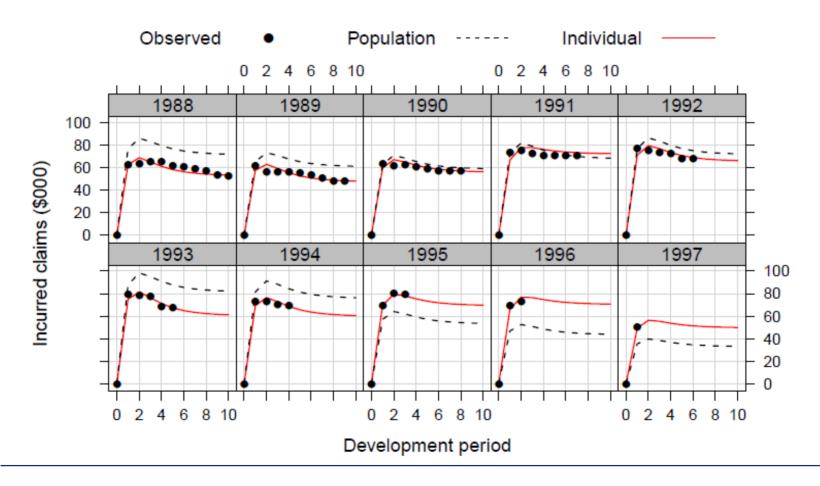


Population:** model fit *not* allowing parameters to vary by cohort *Individual:** model fit allowing parameters to vary by cohort

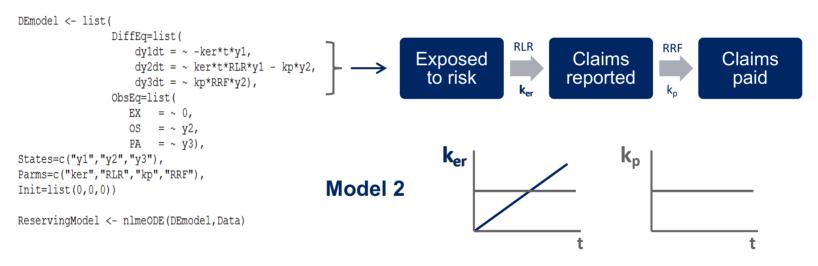
Model 1 paid fits



Model 1 incurred fits



Implementation in R Model 2

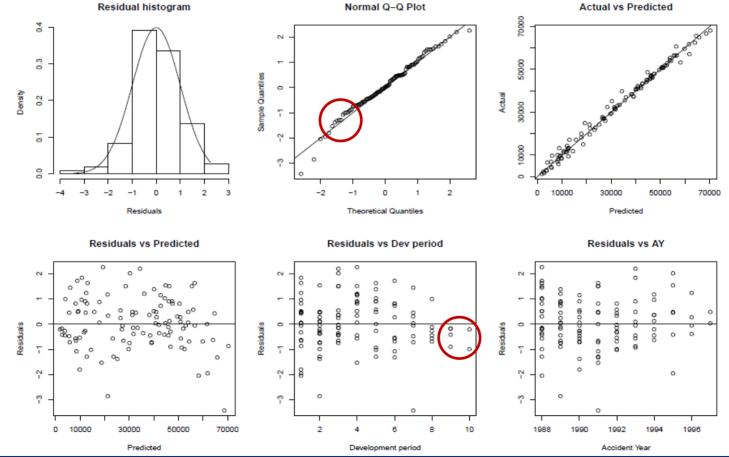


Revise starting values and re-fit nlme model...

Liberty Specialty Markets

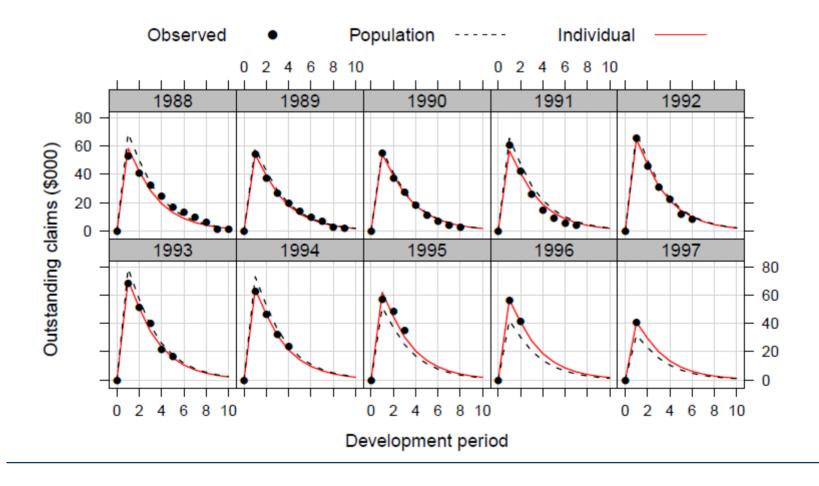
Implementation in R

Model 2 Diagnostics

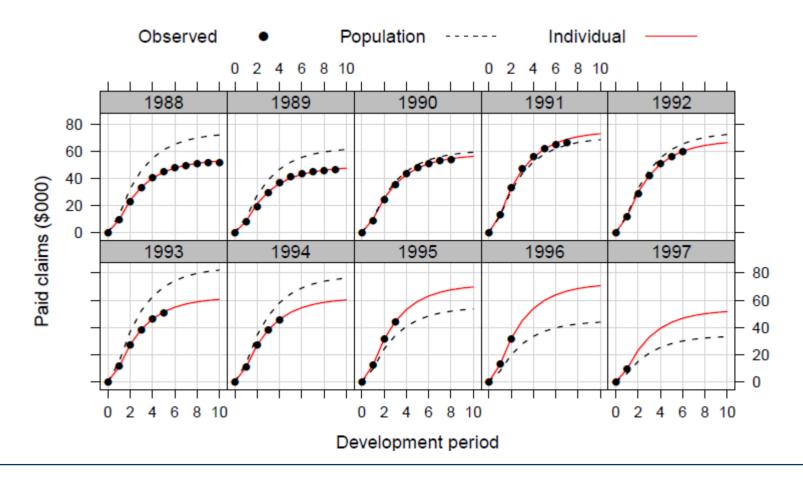


BIC is lower than Model 1

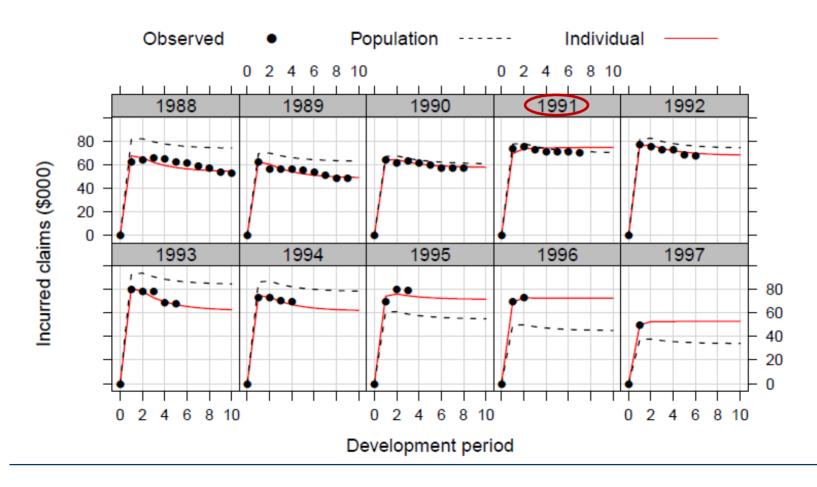
Implementation in R Model 2 O/S fits



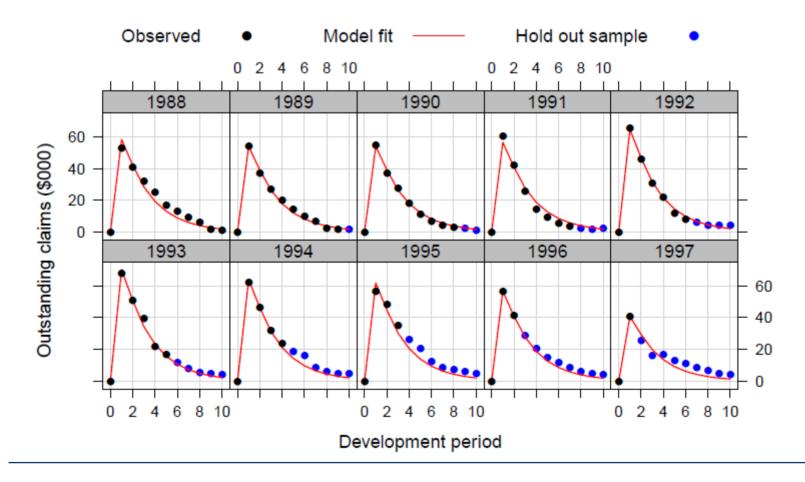
Model 2 paid fits



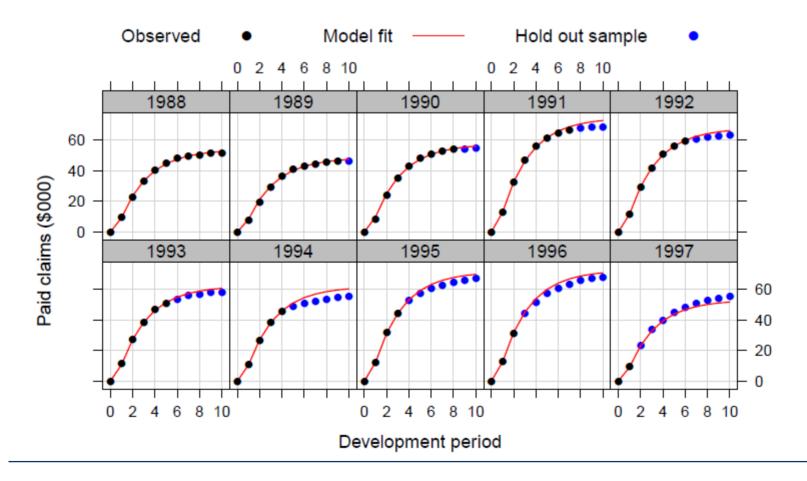
Model 2 incurred fits



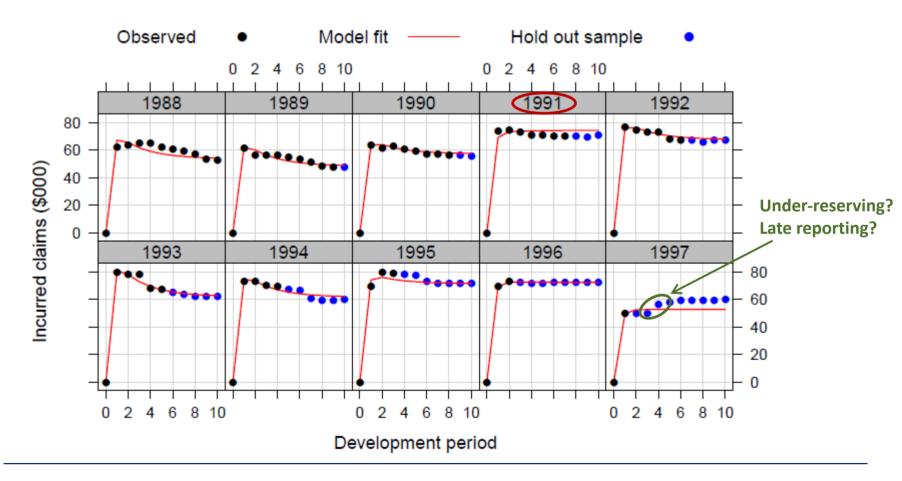
Model 2 O/S vs. hold out sample



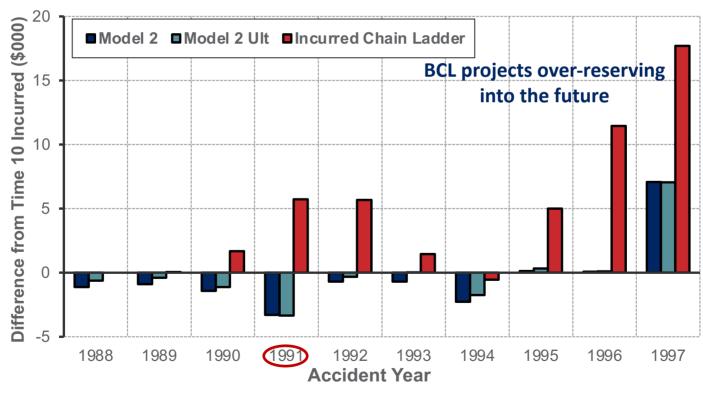
Model 2 paid vs. hold out sample



Model 2 incurred vs. hold out sample



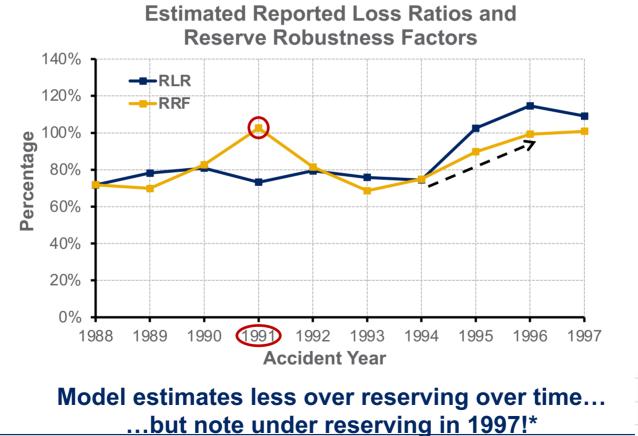
Implementation in R Model 2 Summary (1)

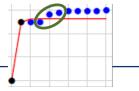


Actual - Predicted Time 10 Incurred

 $Ult_i = RLR_i * RRF_i * Prem_i = Paid_i(t=\infty)$

Model 2 Summary (2)

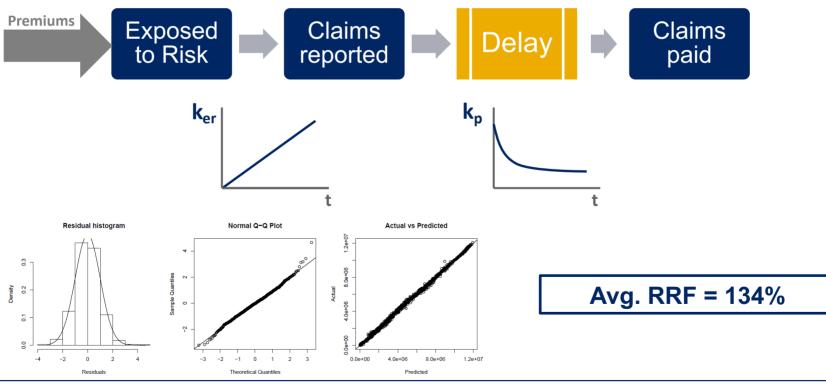




*In practice: discuss with case handlers and test changes in RRF

Increase complexity as necessary

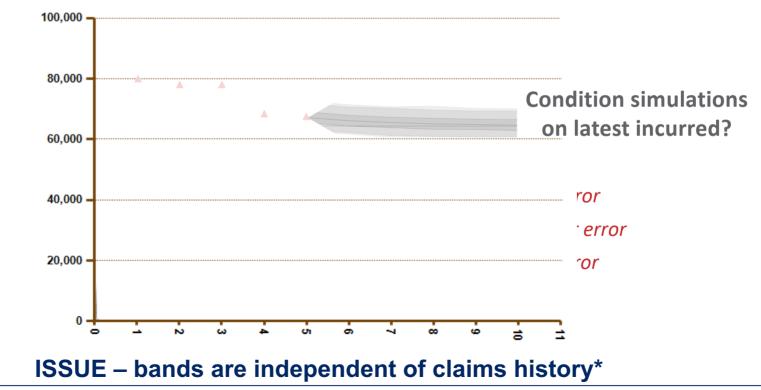
Motor PI (capped)* model



*Personal Injury; claims capped at £100k

Prediction Intervals

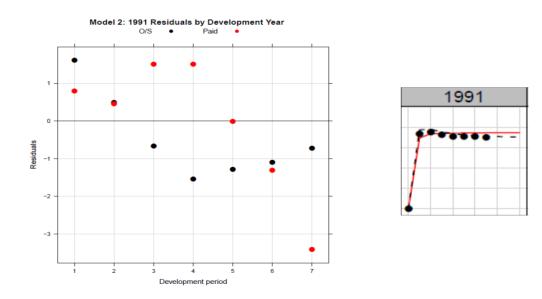
Use model distributional assumptions OR bootstrap



*Intervals show how the entirety of a cohort may have developed if it occurred thousands of times

Future development

- Autocorrelation
- "Repeated measures" models often exhibit autocorrelation
 - An initial discrepancy in fit is likely to lead to subsequent discrepancy and so on...
 - This can be an issue:



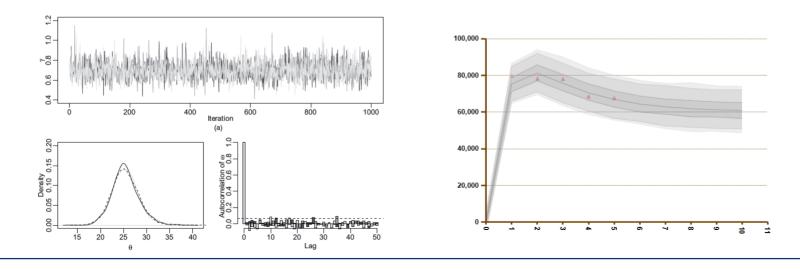
The "nlme" package contains a variety of correlation structures*

*& user is able to define custom structures

Future development

Bayesian extension

- A Bayesian extension is a natural next step
 - A practitioner should be able to select prior distributions for RLR and RRF
 - Potentially not as easy for k_{er} and k_{p}
- Key benefit: obtain a full posterior distribution of outcomes



Conclusions (1)

Notes from an experienced modeller*

- "Fitting non-linear mixed effects models can be a tricky (and frustrating) business"
 - Parameterisation is a key issue
 - If the model runs, it doesn't mean that the answer is correct
 - Method of fitting does make a difference
- "Model diagnostics are (even more) important for these models"

"There are some *general* rules for fitting these models... ...but experience is the best guide"

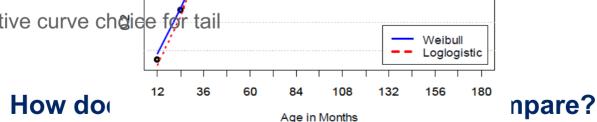
Conclusions (2)

Hierarchical growth curves for loss reserving

Strengths of Guszcza's method:

- Straightforward implementation (+ ponvergence)

- Independent method of reserving & measuring uncertainty*
- Weaknesses of Guszcza's method: $G(x \mid \omega, \theta) = 1 \exp(-(x/\theta)^{\omega})$
 - Parameters can be difficult to interpret [in an insurance context]
 - Often unsuitable for incurred claims
 - Subjective curve choice for tail



Weibull and Loglogistic Growth Curves

Conclusions (3)

Compartmental reserving

• Strengths of compartmental reserving:

Weaknesses of compartmental reserving:

Requires specific data set and se

Compartmental Reserving

a new reserving approach implemented in R

Jake Morris

29 June 2015

Additional Slides

 $Data \leftrightarrow Model$

Model form dictates dataset

Cohort	t	Claims	Туре	Dose	Cmt
1994	0	0	1	110784	1
1994	0	0	2	0	1
1994	1	62434	1	0	1
1994	1	11194	2	0	1
1994	2	46661	1	0	1
1994	2	26893	2	0	1
1994	3	32248	1	0	1
1994	3	38488	2	0	1
1994	4	24140	1	0	1
1994	4	45580	2	0	1

•	Cohort	cohort
---	--------	--------

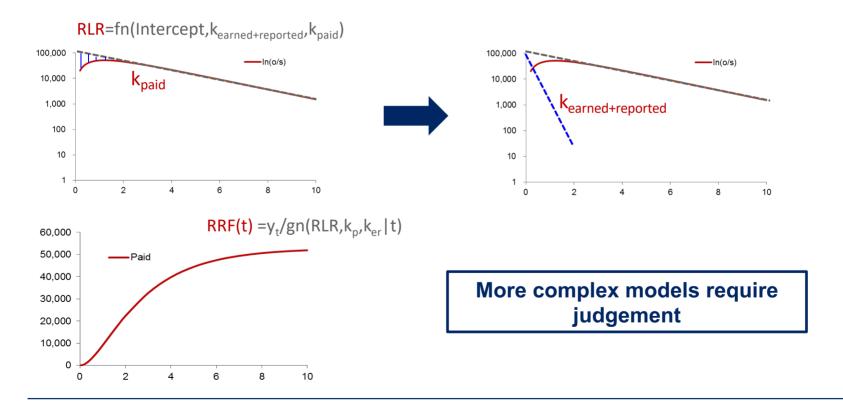
- t development period (years)
- Claims cumulative O/S or paid at t
- **Type** O/S or paid claims indicator {1,2}
- Dose premiums written at t*
- **Cmt** premium input compartment {1}

*If using a writing/earnings pattern, "Dose" = premiums written/earned uniformly between t_j and t_{j+1} [Define "Rate" column = Prems $\div (t_{j+1} - t_j)$]

Additional Slides

Parameterisation

"Feathering" can help



Methodology

Structural model

Maximum data requirements (e.g. UW year cohorts)

• Cumulative triangles

Additional Slides

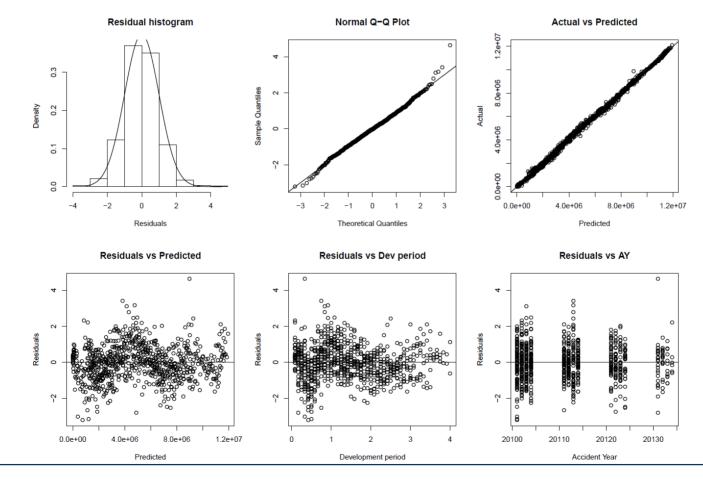
Wkcomp estimated parameters

AY	RLR	k _r /t	RRF	k _p
1988	0.72		0.72	
1989	0.78	5.94	0.70	
1990	0.81		0.83	
1991	0.73		1.03	
1992	0.79		0.81	0.39
1993	0.76		0.69	0.59
1994	0.74		0.75	
1995	1.02		0.90	
1996	1.15		0.99	
1997	1.09		1.01	

Liberty Specialty Markets

Additional Slides

PI (capped) diagnostics



Additional Slides

Future development: miscellaneous

Model extensions

- How accurately can we capture the underlying process under this framework?

Calendar year effects

- Dummy indicators, e.g. $RRF(t) = \{1,1,1,1,\mathbf{x},\mathbf{x},\mathbf{x}\}^*RRF$
- Principle: test significance of adding covariate

Predictability study

- Compartmental reserving vs. other conventional methods

Uncertainty study

- Compartmental reserving vs. other conventional methods