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 A representation of a dynamic system 

 The states 𝜃𝑡  of the system are not directly observable 

 These states “drive” the observable set of values 𝑌𝑡 

 The state space model has conditional independence structure 

What are state space models? 

  𝜃𝑡−2   𝜃𝑡−1   𝜃𝑡   𝜃𝑡+1   𝜃𝑡+2 

  𝑌𝑡−2 𝑌𝑡−1 𝑌𝑡 𝑌𝑡+1 𝑌𝑡+2 

States 

Observations 
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 Can use subjective expert judgement and data from any 
relevant source to drive model outputs  

 Allows models with meaningful dynamic parameters to be 
created 

 States and forecasts have probabilistic representation making 
them useful of quantifying uncertainty for reserves 

 Provides a formal framework for intervention 

 Can be used as a framework for automating the reserving 
process 

Why State Space Models? 

Advantages 
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 Expert skills need to be acquired or developed to use 
them 

 

 Relatively unknown in actuarial analysis so may take time 
to gain acceptance 

 

 They take along time to develop and can be expensive to 
implement 

 

 They can be very complex so easy to get wrong 

Why State Space Models? 

Disadvantages 
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 Observation Equation 

𝑌𝑡|𝜃𝑡   𝑌𝑡 = 𝐹𝑡 𝜃𝑡 , 𝑣𝑡   𝑣𝑡 ~ 𝐻𝑣  

 

 System or state Equation 

𝜃𝑡|𝜃𝑡−1  𝜃𝑡 = 𝐺𝑡 𝜃𝑡 , 𝑤𝑡   𝑤𝑡~ 𝐻𝑤 

 

𝐹𝑡: Design matrix/function 

𝐺𝑡: System matrix/function 

𝑣𝑡:  Observation errors with distribution 

𝑤𝑡:  Evolution errors with distribution 

 

𝐻𝑣 and 𝐻𝑤 are not necessarily normal 

𝐹𝑡 and 𝐺𝑡 are not necessarily linear 

𝑣𝑡 and 𝑤𝑡 are mutually independent 

General representation 
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 Focus on filtering and forecasting 

 

 Framework for multivariate model from de Jong & Zehnwirth’s 
approach to system and design matrices 

 

 A growth curves approach to reserving e.g. Dave Clark & James 
Guszcza 

 

 Sequential Importance Resampling particle filter for nonlinear 
functions 

 

 In general we assume that the covariance matrices 𝑉𝑡 and 𝑊𝑡 
are constant with time 

 

Approach 
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 Cumulative paid claims for origin year 𝑗 and development 
period 𝑡 be given by 𝑃𝑗,𝑡 

 The univariate model focuses on claims development for a 
particular origin year 

 The log-transformed paid claims is our observation 

 𝑌𝑡 = log𝑒 𝑃𝑡  

 The observation and system equations 

 

𝑌𝑡|𝜃𝑡   𝑌𝑡 = 𝐹𝑡𝜃𝑡 + 𝑣𝑡  𝑣𝑡 ~ 𝑁(0, 𝑉𝑡) 

𝜃𝑡|𝜃𝑡−1  𝜃𝑡 = 𝐺𝑡𝜃𝑡−1 + 𝑤𝑡 𝑤𝑡 ~ 𝑁(0, 𝑊𝑡) 

 

𝐹𝑡 =
1
0

 𝐺𝑡 = 
1 𝜆
0 𝜆

 𝜃𝑡 = 𝜃𝑡1 , 𝜃𝑡1   𝑤𝑡 = 𝑤𝑡1 , 𝑤𝑡1  

Univariate model 
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 The Gompertz, Gumbel, and Logistic curves have parameters 
that relate to 𝜆 

 

 Dave Clark & James Guszcza suggest some other curves that 
can be used 

 

 For instance in the Gompertz function 

 

𝑃𝑡 = 𝛼𝑒−𝛽𝑒−𝛾𝑡
 𝛼, 𝛽, 𝛾 > 0  

λ = 𝑒−𝛾 

 

Univariate model 
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 Consider the Mitscherlich as a “log Gompertz” type function 

  

Mitscherlich : 𝐸 log(𝑃𝑡)| 𝜃𝑡 =  𝛼 −  𝛽𝜆𝑡 

Observation: 𝑌𝑡 = log(𝑃𝑡) − log(𝑃𝑡−1) 

Evolution: 𝐸 𝜃𝑡|𝜃𝑡−1 = 𝜆𝜃𝑡 

 

Observation:  𝑌𝑡 = 𝜃𝑡 + 𝑣𝑡 

System:   𝜃𝑡 = 𝜆𝜃𝑡−1 + 𝑤𝑡 

  

 We will stick to the original formulation 

 

Mitscherlich for claims increment 
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 Parameter 𝜆 may be estimated from nonlinear regression and 
is a constant in the dynamic model 

 

 The prior distribution of 𝜃 is 𝜃0 𝐷0 ~ 𝑁(𝑚0, 𝐶0) where 𝐷𝑡 is 
the data available at time t. 

 

 However 𝑚0, 𝐶0, 𝜆, V, W can all be obtained by using maximum 
likelihood methods. This is what we do in this presentation. 

 

 Of course they can be adjusted or created using expert 
judgement. V and W don’t need to be constants (adaptive). 

Estimation of filter parameters 

www.activeanalytics.co.uk Commercial Auto Paid Data (ChainLadder Package) 
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 Now the multivariate model for the claims triangle 

Multivariate model 
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𝑃1,1      𝑃1,2      𝑃1,3     ⋯      ⋯     ⋯    𝑃1,𝑇−1    𝑃1,𝑇 
𝑃2,1       𝑃2,2      ⋯       ⋯     ⋯     ⋯   𝑃2,𝑇−1 
𝑃3,1       𝑃3,1      ⋯       ⋯     ⋯      𝑃3,𝑇−2 
   ⋮            ⋮                                ⋮ 
   ⋮            ⋮          ⋮ 
𝑃𝐽−2,1   𝑃𝐽−2,2  𝑃𝐽−2,3 

𝑃𝐽−1,1   𝑃𝐽−1,2 

𝑃𝐽,1 

Development period  (d)  O
rigin

 year  (j) 



 Data is a successively expanding vector of diagonals 

 𝑌𝑡  is the vector of log cumulative claims at time 𝑡 containing 
𝑦𝑗,𝑑, 𝑡 = 𝑗 + 𝑑 

Multivariate model 
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𝑌1 = 𝑦1,1 , 𝑌2 =  
𝑦1,2

𝑦2,1
, 𝑌3 =

𝑦1,3

𝑦2,2

𝑦3,1

,   ⋯ ,   𝑌𝑡 =

𝑦1,𝑡−1

𝑦2,𝑡−2

⋮
𝑦𝐽−1,2

𝑦𝐽,1

 

 Design and system matrices 
𝐹𝑡 & 𝐺𝑡 are now block forms 

(de Jong & Zehnwirth) 



 Off-diagonal blocks give the opportunity to take previous states 
into account 

𝑝 𝑝𝜆 (1 − 𝑝) 0

0 𝑝𝜆 0 (1 − 𝑝)
 

 Where 0 ≤ 𝑝 ≤ 1 

 

 We can also alter 𝜆 to 𝜆𝑡 so that  𝐺𝑡 is no longer constant with 
time 

𝜆𝑡 = 𝜆0 + 𝛿 1 − (𝑑 + 1)𝑒−2𝑑  

 

 The form is similar to the basis function given by de Jong & 
Zehnwirth 

 

Alternative state matrix forms 
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 The data is adjusted for inflation having 10 development 
periods 

 This means that data is “complete” over 5 development 
periods and origin years 

 Fit multivariate dynamic linear model and chain ladder model 
to the 5 by 5 triangle 

 The 𝜆𝑡 = 𝜆0 + 𝛿 1 − (𝑑 + 1)𝑒−2𝑑  form was used 

 Compare residual sums of squares  

Multivariate model 
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Actual (Inflation adjusted) 
          1                  2               3                4                 5 
1    19827.00 44449.00 61205.00  77398.00  88079.00 
2    20398.16 44283.85  62835.02  84362.19  95873.43 
3    18801.15 37116.70  54811.46  73788.66  85143.78 
4    17627.32 39120.33  62148.34  74740.05  86238.05 
5    17441.77 39836.28  58902.97  73055.92  81916.40 
 
DLM  𝐿𝑜𝑔 𝑅𝑆𝑆 = 19.41 
          1                2               3               4               5 
1    19827.00 44449.00 61205.00 77398.00 88079.00 
2    20398.16 44283.85 62835.02 84362.19 98308.83 
3    18801.15 37116.70 54811.46 70202.57 81688.29 
4    17627.32 39120.33 58582.04 75282.23 87904.65 
5    17441.77 36235.67 54701.20 70295.07 82081.30 
 
ChainLadder  𝐿𝑜𝑔 𝑅𝑆𝑆 = 20.78 
        1                2               3                4               5 
 1 19827.00 44449.00 61205.00 77398.00 88079.00 
 2 20398.16 44283.85 62835.02 84362.19 96004.26 
 3 18801.15 37116.70 54811.46 71479.45 81343.68 
 4 17627.32 39120.33 55595.98 72502.55 82507.97 
 5 17441.77 37537.26 53346.20 69568.61 79169.14 
 

Model outputs 
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 We have static variables 𝜆 and 𝛿 that need to be suitably 
obtained 

 Linear space state models limit us to normal error assumptions 
and linear system and observation equations 

 Linear state space models constrain the choice of functions we 
can use to represent the claims development curve 

Disadvantages 
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Particle filters allow a more flexible modelling structure including 

 

 Allows nonlinear design (𝐹𝑡) and system (𝐺𝑡) relationships 

 Allows non-normal 𝑣𝑡 and 𝑤𝑡 

 Working directly curve parameters as states gives us 
interesting options for the state evolution matrix (𝐺𝑡) 

 Gives a good representation of the updated system “state” 
with time 

 

 The price is that simulation is now necessary - which can take 
much longer depending on the number of particles 

 Here some basic sequential importance sampling examples are 
presented 

Particle filters 
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Procedure 
 

 Sample 𝜃𝑡0

(1)
, … , 𝜃𝑡0

(𝑁)
 from 𝑝0(𝜃) prior distribution 

 At time t – 1 we have particles 𝜃𝑡−1
(1)

, … , 𝜃𝑡−1
(𝑁)

 

 Use the evolution equation to generate a new set of particles 

𝜃 𝑡
(1)

, … , 𝜃 𝑡
(𝑁)

 by computing 𝐺𝑡(𝜃 𝑡|𝜃𝑡−1
𝑖

, 𝑊𝑡
(𝑖)

) 

 Then compute  the weights from the obs. density function 

𝜔𝑡
(𝑖)

∝
𝑝(𝑌𝑡|𝜃 𝑡

𝑖
, 𝑦𝑡)

 𝑝(𝑌𝑡|𝜃 𝑡
𝑖
, 𝑦𝑡)𝑖

 

 Now resample 𝜃𝑡
(𝑖)

 from the pairs {𝜃 𝑡
𝑖
, 𝜔𝑡

(𝑖)
} ~ 𝑝(𝜃𝑡|𝐷𝑡) 

Sequential Importance Resampling 
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 Two nonlinear forms are considered 

 The Gompertz function 

𝐸 𝑌𝑡 𝜃𝑡 = 𝜃𝑡1𝑒
−𝜃𝑡2

𝜃𝑡3𝑡

 

 The Weibull function 

𝐸 𝑌𝑡 𝜃𝑡 = 𝜃𝑡1 1 − 𝑒
−

𝑡
𝜃𝑡2

𝜃𝑡3

 

 

 𝜃𝑡1 is the ultimate loss and now exists as a state 

 Claims triangles data from Dave Clark and Auto data from the 
ChainLadder package 

 The components 𝜃𝑡, 𝑣𝑡 and 𝑤𝑡 are normally distributed 
𝑣𝑡~𝑁 0, 𝑉𝑡 ;    𝑤𝑡~𝑁 0,𝑊𝑡 ;     𝜃𝑡~𝑁(𝑚𝑡 ,  𝐶𝑡 ) 

 

Analysis 
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Outputs: Gompertz 
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Outputs: Gompertz (Auto) 

www.activeanalytics.co.uk 



Outputs: Weibull 
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Outputs: Weibull (Auto) 
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 More work to be done to hone the model, perhaps a none 
parametric technique are more appropriate 

 State space models offer an interesting and varied tool set 

 They offer a formal framework that can be used for intervening 
in the forecasting process 

 They can be complex, difficult to implement and take a long 
time to develop 

 It can be a challenge to obtain an appropriate parametric curve 
and parameters for the state space model 

 

 

Summary 
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