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 A representation of a dynamic system 

 The states 𝜃𝑡  of the system are not directly observable 

 These states “drive” the observable set of values 𝑌𝑡 

 The state space model has conditional independence structure 

What are state space models? 

  𝜃𝑡−2   𝜃𝑡−1   𝜃𝑡   𝜃𝑡+1   𝜃𝑡+2 

  𝑌𝑡−2 𝑌𝑡−1 𝑌𝑡 𝑌𝑡+1 𝑌𝑡+2 

States 

Observations 
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 Can use subjective expert judgement and data from any 
relevant source to drive model outputs  

 Allows models with meaningful dynamic parameters to be 
created 

 States and forecasts have probabilistic representation making 
them useful of quantifying uncertainty for reserves 

 Provides a formal framework for intervention 

 Can be used as a framework for automating the reserving 
process 

Why State Space Models? 

Advantages 
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 Expert skills need to be acquired or developed to use 
them 

 

 Relatively unknown in actuarial analysis so may take time 
to gain acceptance 

 

 They take along time to develop and can be expensive to 
implement 

 

 They can be very complex so easy to get wrong 

Why State Space Models? 

Disadvantages 
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 Observation Equation 

𝑌𝑡|𝜃𝑡   𝑌𝑡 = 𝐹𝑡 𝜃𝑡 , 𝑣𝑡   𝑣𝑡 ~ 𝐻𝑣  

 

 System or state Equation 

𝜃𝑡|𝜃𝑡−1  𝜃𝑡 = 𝐺𝑡 𝜃𝑡 , 𝑤𝑡   𝑤𝑡~ 𝐻𝑤 

 

𝐹𝑡: Design matrix/function 

𝐺𝑡: System matrix/function 

𝑣𝑡:  Observation errors with distribution 

𝑤𝑡:  Evolution errors with distribution 

 

𝐻𝑣 and 𝐻𝑤 are not necessarily normal 

𝐹𝑡 and 𝐺𝑡 are not necessarily linear 

𝑣𝑡 and 𝑤𝑡 are mutually independent 

General representation 
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 Focus on filtering and forecasting 

 

 Framework for multivariate model from de Jong & Zehnwirth’s 
approach to system and design matrices 

 

 A growth curves approach to reserving e.g. Dave Clark & James 
Guszcza 

 

 Sequential Importance Resampling particle filter for nonlinear 
functions 

 

 In general we assume that the covariance matrices 𝑉𝑡 and 𝑊𝑡 
are constant with time 

 

Approach 
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 Cumulative paid claims for origin year 𝑗 and development 
period 𝑡 be given by 𝑃𝑗,𝑡 

 The univariate model focuses on claims development for a 
particular origin year 

 The log-transformed paid claims is our observation 

 𝑌𝑡 = log𝑒 𝑃𝑡  

 The observation and system equations 

 

𝑌𝑡|𝜃𝑡   𝑌𝑡 = 𝐹𝑡𝜃𝑡 + 𝑣𝑡  𝑣𝑡 ~ 𝑁(0, 𝑉𝑡) 

𝜃𝑡|𝜃𝑡−1  𝜃𝑡 = 𝐺𝑡𝜃𝑡−1 + 𝑤𝑡 𝑤𝑡 ~ 𝑁(0, 𝑊𝑡) 

 

𝐹𝑡 =
1
0

 𝐺𝑡 = 
1 𝜆
0 𝜆

 𝜃𝑡 = 𝜃𝑡1 , 𝜃𝑡1   𝑤𝑡 = 𝑤𝑡1 , 𝑤𝑡1  

Univariate model 
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 The Gompertz, Gumbel, and Logistic curves have parameters 
that relate to 𝜆 

 

 Dave Clark & James Guszcza suggest some other curves that 
can be used 

 

 For instance in the Gompertz function 

 

𝑃𝑡 = 𝛼𝑒−𝛽𝑒−𝛾𝑡
 𝛼, 𝛽, 𝛾 > 0  

λ = 𝑒−𝛾 

 

Univariate model 
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 Consider the Mitscherlich as a “log Gompertz” type function 

  

Mitscherlich : 𝐸 log(𝑃𝑡)| 𝜃𝑡 =  𝛼 −  𝛽𝜆𝑡 

Observation: 𝑌𝑡 = log(𝑃𝑡) − log(𝑃𝑡−1) 

Evolution: 𝐸 𝜃𝑡|𝜃𝑡−1 = 𝜆𝜃𝑡 

 

Observation:  𝑌𝑡 = 𝜃𝑡 + 𝑣𝑡 

System:   𝜃𝑡 = 𝜆𝜃𝑡−1 + 𝑤𝑡 

  

 We will stick to the original formulation 

 

Mitscherlich for claims increment 
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 Parameter 𝜆 may be estimated from nonlinear regression and 
is a constant in the dynamic model 

 

 The prior distribution of 𝜃 is 𝜃0 𝐷0 ~ 𝑁(𝑚0, 𝐶0) where 𝐷𝑡 is 
the data available at time t. 

 

 However 𝑚0, 𝐶0, 𝜆, V, W can all be obtained by using maximum 
likelihood methods. This is what we do in this presentation. 

 

 Of course they can be adjusted or created using expert 
judgement. V and W don’t need to be constants (adaptive). 

Estimation of filter parameters 
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Univariate model 
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 Now the multivariate model for the claims triangle 

Multivariate model 

www.activeanalytics.co.uk 

𝑃1,1      𝑃1,2      𝑃1,3     ⋯      ⋯     ⋯    𝑃1,𝑇−1    𝑃1,𝑇 
𝑃2,1       𝑃2,2      ⋯       ⋯     ⋯     ⋯   𝑃2,𝑇−1 
𝑃3,1       𝑃3,1      ⋯       ⋯     ⋯      𝑃3,𝑇−2 
   ⋮            ⋮                                ⋮ 
   ⋮            ⋮          ⋮ 
𝑃𝐽−2,1   𝑃𝐽−2,2  𝑃𝐽−2,3 

𝑃𝐽−1,1   𝑃𝐽−1,2 

𝑃𝐽,1 

Development period  (d)  O
rigin

 year  (j) 



 Data is a successively expanding vector of diagonals 

 𝑌𝑡  is the vector of log cumulative claims at time 𝑡 containing 
𝑦𝑗,𝑑, 𝑡 = 𝑗 + 𝑑 

Multivariate model 
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𝑌1 = 𝑦1,1 , 𝑌2 =  
𝑦1,2

𝑦2,1
, 𝑌3 =

𝑦1,3

𝑦2,2

𝑦3,1

,   ⋯ ,   𝑌𝑡 =

𝑦1,𝑡−1

𝑦2,𝑡−2

⋮
𝑦𝐽−1,2

𝑦𝐽,1

 

 Design and system matrices 
𝐹𝑡 & 𝐺𝑡 are now block forms 

(de Jong & Zehnwirth) 



 Off-diagonal blocks give the opportunity to take previous states 
into account 

𝑝 𝑝𝜆 (1 − 𝑝) 0

0 𝑝𝜆 0 (1 − 𝑝)
 

 Where 0 ≤ 𝑝 ≤ 1 

 

 We can also alter 𝜆 to 𝜆𝑡 so that  𝐺𝑡 is no longer constant with 
time 

𝜆𝑡 = 𝜆0 + 𝛿 1 − (𝑑 + 1)𝑒−2𝑑  

 

 The form is similar to the basis function given by de Jong & 
Zehnwirth 

 

Alternative state matrix forms 
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 The data is adjusted for inflation having 10 development 
periods 

 This means that data is “complete” over 5 development 
periods and origin years 

 Fit multivariate dynamic linear model and chain ladder model 
to the 5 by 5 triangle 

 The 𝜆𝑡 = 𝜆0 + 𝛿 1 − (𝑑 + 1)𝑒−2𝑑  form was used 

 Compare residual sums of squares  

Multivariate model 
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Actual (Inflation adjusted) 
          1                  2               3                4                 5 
1    19827.00 44449.00 61205.00  77398.00  88079.00 
2    20398.16 44283.85  62835.02  84362.19  95873.43 
3    18801.15 37116.70  54811.46  73788.66  85143.78 
4    17627.32 39120.33  62148.34  74740.05  86238.05 
5    17441.77 39836.28  58902.97  73055.92  81916.40 
 
DLM  𝐿𝑜𝑔 𝑅𝑆𝑆 = 19.41 
          1                2               3               4               5 
1    19827.00 44449.00 61205.00 77398.00 88079.00 
2    20398.16 44283.85 62835.02 84362.19 98308.83 
3    18801.15 37116.70 54811.46 70202.57 81688.29 
4    17627.32 39120.33 58582.04 75282.23 87904.65 
5    17441.77 36235.67 54701.20 70295.07 82081.30 
 
ChainLadder  𝐿𝑜𝑔 𝑅𝑆𝑆 = 20.78 
        1                2               3                4               5 
 1 19827.00 44449.00 61205.00 77398.00 88079.00 
 2 20398.16 44283.85 62835.02 84362.19 96004.26 
 3 18801.15 37116.70 54811.46 71479.45 81343.68 
 4 17627.32 39120.33 55595.98 72502.55 82507.97 
 5 17441.77 37537.26 53346.20 69568.61 79169.14 
 

Model outputs 
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 We have static variables 𝜆 and 𝛿 that need to be suitably 
obtained 

 Linear space state models limit us to normal error assumptions 
and linear system and observation equations 

 Linear state space models constrain the choice of functions we 
can use to represent the claims development curve 

Disadvantages 
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Particle filters allow a more flexible modelling structure including 

 

 Allows nonlinear design (𝐹𝑡) and system (𝐺𝑡) relationships 

 Allows non-normal 𝑣𝑡 and 𝑤𝑡 

 Working directly curve parameters as states gives us 
interesting options for the state evolution matrix (𝐺𝑡) 

 Gives a good representation of the updated system “state” 
with time 

 

 The price is that simulation is now necessary - which can take 
much longer depending on the number of particles 

 Here some basic sequential importance sampling examples are 
presented 

Particle filters 
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Procedure 
 

 Sample 𝜃𝑡0

(1)
, … , 𝜃𝑡0

(𝑁)
 from 𝑝0(𝜃) prior distribution 

 At time t – 1 we have particles 𝜃𝑡−1
(1)

, … , 𝜃𝑡−1
(𝑁)

 

 Use the evolution equation to generate a new set of particles 

𝜃 𝑡
(1)

, … , 𝜃 𝑡
(𝑁)

 by computing 𝐺𝑡(𝜃 𝑡|𝜃𝑡−1
𝑖

, 𝑊𝑡
(𝑖)

) 

 Then compute  the weights from the obs. density function 

𝜔𝑡
(𝑖)

∝
𝑝(𝑌𝑡|𝜃 𝑡

𝑖
, 𝑦𝑡)

 𝑝(𝑌𝑡|𝜃 𝑡
𝑖
, 𝑦𝑡)𝑖

 

 Now resample 𝜃𝑡
(𝑖)

 from the pairs {𝜃 𝑡
𝑖
, 𝜔𝑡

(𝑖)
} ~ 𝑝(𝜃𝑡|𝐷𝑡) 

Sequential Importance Resampling 
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 Two nonlinear forms are considered 

 The Gompertz function 

𝐸 𝑌𝑡 𝜃𝑡 = 𝜃𝑡1𝑒
−𝜃𝑡2

𝜃𝑡3𝑡

 

 The Weibull function 

𝐸 𝑌𝑡 𝜃𝑡 = 𝜃𝑡1 1 − 𝑒
−

𝑡
𝜃𝑡2

𝜃𝑡3

 

 

 𝜃𝑡1 is the ultimate loss and now exists as a state 

 Claims triangles data from Dave Clark and Auto data from the 
ChainLadder package 

 The components 𝜃𝑡, 𝑣𝑡 and 𝑤𝑡 are normally distributed 
𝑣𝑡~𝑁 0, 𝑉𝑡 ;    𝑤𝑡~𝑁 0,𝑊𝑡 ;     𝜃𝑡~𝑁(𝑚𝑡 ,  𝐶𝑡 ) 

 

Analysis 
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Outputs: Gompertz 
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Outputs: Gompertz (Auto) 
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Outputs: Weibull 
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Outputs: Weibull (Auto) 
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 More work to be done to hone the model, perhaps a none 
parametric technique are more appropriate 

 State space models offer an interesting and varied tool set 

 They offer a formal framework that can be used for intervening 
in the forecasting process 

 They can be complex, difficult to implement and take a long 
time to develop 

 It can be a challenge to obtain an appropriate parametric curve 
and parameters for the state space model 

 

 

Summary 
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