Assessing Exploration Risk for Geothermal Wells

Bernhard Kübler

14 July 2014
Agenda

Motivation

Classification of Techniques

Data

Support Vector Machine Regression (SVR)

Uncertainty Analysis

Summary
Agenda

Motivation

Classification of Techniques

Data

Support Vector Machine Regression (SVR)

Uncertainty Analysis

Summary
Agenda

Motivation

Classification of Techniques

Data

Support Vector Machine Regression (SVR)

Uncertainty Analysis

Summary
Agenda

Motivation

Classification of Techniques

Data

Support Vector Machine Regression (SVR)

Uncertainty Analysis

Summary
Agenda

Motivation

Classification of Techniques

Data

Support Vector Machine Regression (SVR)

Uncertainty Analysis

Summary
Agenda

Motivation

Classification of Techniques

Data

Support Vector Machine Regression (SVR)

Uncertainty Analysis

Summary
Motivation

Power P

depends on temperature T and flow rate Q:

$$P \propto TQ$$

Success

- Flow rate exceeds given level Q_0 (at a certain drawdown)
- Temperature exceeds given level T_0

[Schulz et al. (2005)], [Schulz et al. (2007)]
Motivation

Power P

depends on temperature T and flow rate Q:

\[P \propto TQ \]

Success

- Flow rate exceeds given level Q_0 (at a certain drawdown)
- Temperature exceeds given level T_0

[Schulz et al. (2005)], [Schulz et al. (2007)]
Motivation

Problems

- Forecast *expected* flow rate and temperature
- Uncertainty analysis
 1. Confidence and prediction intervals (*estimation risk*)
 2. Estimate *quantiles* (cf. *Value at Risk* – VaR)
Motivation

Problems

- Forecast expected flow rate and temperature
- Uncertainty analysis
 1. Confidence and prediction intervals (estimation risk)
 2. Estimate quantiles (cf. Value at Risk – VaR)
Classification of Techniques

Geomathematics

Seismics, gravimetry and geomagnetics

Deterministic methods

Splines, inverse distance weighting

Spatial statistics

- Kriging
- Simulation
- Machine Learning

[Chiles, Delfiner (2013)], [Demyanov (2013)], [Kanevski et al. (2009)],...
Classification of Techniques

Geomathematics
Seismics, gravimetry and geomagnetics

Deterministic methods
Splines, inverse distance weighting

Spatial statistics
- Kriging
- Simulation
- Machine Learning

[Chiles, Delfiner (2013)], [Demyanov (2013)], [Kanevski et al. (2009)],...
Classification of Techniques

Geomathematics
Seismics, gravimetry and geomagnetics

Deterministic methods
Splines, inverse distance weighting

Spatial statistics
- Kriging
- Simulation
- Machine Learning

[Chiles, Delfiner (2013)], [Demyanov (2013)], [Kanevski et al. (2009)],...
Classification of Techniques

<table>
<thead>
<tr>
<th>Geomathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seismics, gravimetry and geomagnetics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deterministic methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splines, inverse distance weighting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spatial statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kriging</td>
</tr>
<tr>
<td>Simulation</td>
</tr>
<tr>
<td>Machine Learning</td>
</tr>
</tbody>
</table>

[Chiles, Delfiner (2013)], [Demyanov (2013)], [Kanevski et al. (2009)],...
Classification of Techniques

Geomathematics
Seismics, gravimetry and geomagnetics

Deterministic methods
Splines, inverse distance weighting

Spatial statistics
- Kriging
- Simulation
- Machine Learning

[Chiles, Delfiner (2013)], [Demyanov (2013)], [Kanevski et al. (2009)],...
Classification of Techniques

Geomathematics
- Seismics, gravimetry and geomagnetics

Deterministic methods
- Splines, inverse distance weighting

Spatial statistics
- Kriging
- Simulation
- Machine Learning

[Chiles, Delfiner (2013)], [Demyanov (2013)], [Kanevskii et al. (2009)],...
Data – Map
Histograms

- **Temperatur**
 - Frequency vs. Temperature (°C)

- **Gradient**
 - Frequency vs. Gradient [K/km]

- **Fließrate**
 - Frequency vs. Flow Rate [l/s]

- **Absenkung**
 - Frequency vs. Subsidence [m]
Temperature and depth
Projections of the gradient
Projektions of the flow rate
Lagged Scatter Plot of the flow rate
Variograms

Gradient (brown), flow rate (blue)

London, 07/14/2014 11
SVR

Features

- Nonparametric regression / model free learning
- No distribution assumptions
- Modelling complex, nonlinear phenomena
- Allows for ultrahighdimensional input data
- Allows for modelling multi-scale effects
- Good model calibration – no local optima
- Parameter sparsity – no variogram
- Robustness – high variability, sparse data
- Good generalization w.r.t. unseen data
SVR

Features

- Nonparametric regression / model free learning
- No distribution assumptions
- Modelling complex, nonlinear phenomena
- Allows for ultrahigh-dimensional input data
- Allows for modelling multi-scale effects
- Good model calibration – no local optima
- Parameter sparsity – no variogram
- Robustness – high variability, sparse data
- Good generalization w.r.t. unseen data
SVR

Features

- Nonparametric regression / model free learning
- No distribution assumptions
- Modelling complex, nonlinear phenomena
 - Allows for ultrahighdimensional input data
 - Allows for modelling multi-scale effects
 - Good model calibration – no local optima
 - Parameter sparsity – no variogram
 - Robustness – high variability, sparse data
 - Good generalization w.r.t. unseen data
SVR

Features

- Nonparametric regression / model free learning
- No distribution assumptions
- Modelling complex, nonlinear phenomena
- Allows for ultrahigh-dimensional input data
- Allows for modelling multi-scale effects
- Good model calibration – no local optima
- Parameter sparsity – no variogram
- Robustness – high variability, sparse data
- Good generalization w.r.t. unseen data
SVR

Features

- Nonparametric regression / model free learning
- No distribution assumptions
- Modelling complex, nonlinear phenomena
- Allows for ultrahighdimensional input data
- Allows for modelling multi-scale effects
- Good model calibration – no local optima
- Parameter sparsity – no variogram
- Robustness – high variability, sparse data
- Good generalization w.r.t. unseen data
Features

- Nonparametric regression / model free learning
- No distribution assumptions
- Modelling complex, nonlinear phenomena
- Allows for ultrahighdimensional input data
- Allows for modelling multi-scale effects
- Good model calibration – no local optima
- Parameter sparsity – no variogram
- Robustness – high variability, sparse data
- Good generalization w.r.t. unseen data
SVR

Features

- Nonparametric regression / model free learning
- No distribution assumptions
- Modelling complex, nonlinear phenomena
- Allows for ultrahigh-dimensional input data
- Allows for modelling multi-scale effects
- Good model calibration – no local optima
- Parameter sparsity – no variogram
- Robustness – high variability, sparse data
- Good generalization w.r.t. unseen data
SVR

Features

- Nonparametric regression / model free learning
- No distribution assumptions
- Modelling complex, nonlinear phenomena
- Allows for ultrahighdimensional input data
- Allows for modelling multi-scale effects
- Good model calibration – no local optima
- Parameter sparsity – no variogram
- Robustness – high variability, sparse data
- Good generalization w.r.t. unseen data
SVR

Features
- Nonparametric regression / model free learning
- No distribution assumptions
- Modelling complex, nonlinear phenomena
- Allows for ultrahighdimensional input data
- Allows for modelling multi-scale effects
- Good model calibration – no local optima
- Parameter sparsity – no variogram
- Robustness – high variability, sparse data
- Good generalization w.r.t. unseen data
SVR

Implicit kernel transformation

Gaussian RBF kernel

\[k(x, x') = \langle \Phi(x), \Phi(x') \rangle = \exp(-\sigma \|x - x'\|^2) \]

\(\epsilon \)-insensitive loss function (soft margin loss)

\[|\xi|_{\epsilon} := \begin{cases} 0, & \text{if } |\xi| \leq \epsilon \\ |\xi| - \epsilon, & \text{otherwise} \end{cases} \]
SVR

Hyperparameters
- ϵ: Sensitivity parameter of the loss function
- C: Regularization
- σ: Kernel width

Implementation in R
- `ksvm`{kernlab}
- Model choice
 - `tune.svm`{e1071} performs a grid search
 - `kpar = 'automatic'` adjusts kernel width

Quantile regression: `kqr`{kernlab}

[Karatzoglou et al. (2006)]
SVR

Hyperparameters

- \(\epsilon \): Sensitivity parameter of the loss function
- \(C \): Regularization
- \(\sigma \): Kernel width

Implementation in R

- `ksvm{kernlab}`
- **Model choice**
 - `tune.svm{e1071}` *performs a grid search*
 - `kpar = 'automatic'` *adjusts kernel width*
- **Quantile regression**: `kqr{kernlab}`

[Karatzoglou et al. (2006)]
Validation scheme

Cross validation

- Partition data in a training and a test set
- Fit hyperparameters on training set (nested CV)
- Predict values for test set
- Calculate forecast error
- ... repeat this 100 times

Measures of goodness

- RMSE
- p-value (quantile regression)
Validation scheme

Cross validation
- Partition data in a training and a test set
- Fit hyperparameters on training set (nested CV)
- Predict values for test set
- Calculate forecast error
- ... repeat this 100 times

Measures of goodness
- RMSE
- p-value (quantile regression)
Validation results

- Gradient instead of temperature
- SVR only

<table>
<thead>
<tr>
<th>Method</th>
<th>Gradient</th>
<th>Flow rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVR</td>
<td>4.6</td>
<td>30.0</td>
</tr>
<tr>
<td>MKR</td>
<td>4.4</td>
<td>32.3</td>
</tr>
<tr>
<td>Kriging</td>
<td>4.8</td>
<td>32.2</td>
</tr>
<tr>
<td>Linear</td>
<td>4.8</td>
<td>34.2</td>
</tr>
<tr>
<td>arithm. mean</td>
<td>4.7</td>
<td>31.7</td>
</tr>
</tbody>
</table>
Uncertainty Analysis

Intervals
- Confidence interval
- Prediction interval

Bootstrap
- basic
- studentized
- wild

[Davison, Hinkley (1997)]
Uncertainty Analysis

Intervals
- Confidence interval
- Prediction interval

Bootstrap
- basic
- studentized
- wild

[Davison, Hinkley (1997)]
Uncertainty Analysis

(Kernel-)Quantile regression

- usually: conditional expectation
- here: conditional quantile
- 10%-quantile and 90%-quantile yield 80%-coverage interval

[Koenker (2005)], [Takeuchi et al. (2006)]
Summary

Limits of geostatistics

- Relevant predictors
- Sample size sufficiently large?
- Selection bias

Conclusions

- Integration of further predictors
- Enlarging sample size
Summary

Limits of geostatistics

- Relevant predictors
- Sample size sufficiently large?
- Selection bias

Conclusions

- Integration of further predictors
- Enlarging sample size

References III

