Conferences

Econometrics, Energy and Finance

EMG Workshop on

 International Capital Flows Intern and Global EconomyInitial Public Offerings: New

R in Insurance

The first conference on R in Insurance will be held on Monday 15 July 2013 at Class Business School in London, UK

The intended audience of the conference includes both academics and practitioners who are active or interested in the applications of R in Insurance

RBNS preserving A new method in the DCL © ${ }^{\text {P }}$-package

Mani Hiatus

Cardin Margral
Maria Dolores Mastinez-Miranda Sens Perch Nielsen

Cass Business School London, 14 July 2014

Background

2010 Including Count Data in Claims Reserving
2011 Cash flow simulation for a model of outstanding liabilities based on claim amounts and claim numbers

2012 Double Chain Ladder

2012 Statistical modelling and forecasting in Non-life insurance 2013 Double Chain Ladder and Bornhuetter-Ferguson 2013 Double Chain Ladder, Claims Development Inflation and Zero Claims 2014 RBNS preserving Double Chain Ladder (submitted)
Our aim: a package implementing recent research developments
(1) Introducing the problem: stochastic reserving
(2) Motivating a statistical model for stochastic reserving: the Double Chain Ladder Model
(3) Incorporating expert knowledge: RBNS preserving Double Chain Ladder
(4) The \mathbb{R}^{2}-Package: DCL

The problem: the claims reserving exercise

The life of an individual claim in the general claims process:

Incurred but not reported, IBNR
Reported but not settled, RBNS
Reported and paid

The problem: the claims reserving exercise

The objectives:\checkmark How large future claims payments are likely to be.
\checkmark The timing of future claim payments.
\checkmark The distribution of possible outcomes: future cash-flows.

Framework: Double Chain Ladder

What is Double Chain Ladder?

A firm statistical model which breaks down the chain ladder estimates into individual components.

Why?

\checkmark Connection with classical reserving (tacit knowledge)
\checkmark RBNS and IBNR claims
\checkmark The distribution: full cash-flow

IBNR: Incurred But Not Reported RBNS: Reported But Not Settled Reserve $=I B N R+$ RBNS

What is required? It works on run-off triangles
(adding expert knowledge if available).

The modelled data: two run-off triangles

We model annual/quarterly run-off triangles:
\square Incremental aggregated payments (paid triangle).

DEVELOPMENT

\square Incremental aggregated counts data, which is assumed to have fully run off.

The Double Chain Ladder Model

Parameters involved in the model:
Ultimate claim numbers: α_{i}
Reporting delay: β_{j}
Settlement delay: π_{l}
Development delay: $\widetilde{\beta}_{j}$
Ultimate payment numbers: $\tilde{\alpha}_{i}$
Severity:
underwriting inflation: γ_{i}
delay mean dependencies: μ

Cass Business School

CITY UNIVERSITY LONDON

The Double Chain Ladder Model

Severity inflation

Cass Business School
city university london

The Double Chain Ladder Model

Severity inflation

Cass Business School

The Double Chain Ladder Model

Payments triangle

	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19
1	51645	513057	747581	554656	426090	211996	212916	16199	9091	36933	0	0	0	0	0	0	0	0	0
2	143607	1006115	910371	735878	593070	765997	614642	245482	116065	14633	36298	164636	14601	66826	6415	11400	0	0	NA
3	345758	1467254	1291694	1236995	1127060	779156	391920	844780	94346	229871	12232	11210	20826	84329	9938	16898	0	NA	NA
4	408108	1875253	1809624	1859877	1806412	1422161	761701	306739	109769	139582	53448	36557	0	6731	0	0	NA	NA	NA
5	711788	3253701	2695979	2592550	3376797	2100946	923045	434936	124256	29942	23026	324	58834	31180	12306	NA	NA	NA	NA
6	941448	3614819	3273886	4479163	3841136	2032530	1241700	471996	120135	59047	5081	295	9393	0	NA	NA	NA	NA	NA
7	1221479	5814000	5904668	7112406	5320976	2425835	856998	196958	133568	40099	11797	65669	98728	NA	NA	NA	NA	NA	NA
8	1684782	8163947	7609088	7722323	6298256	1981161	830186	580355	197501	124446	63687	28557	NA						
9	2253183	9479779	7696767	8260492	5871622	2339555	1099429	363351	147355	43520	13782	NA							
10	2042830	8791743	9169217	7864324	5894987	1977707	722425	245391	59786	-1390	NA								
11	1570388	9961564	9669606	8024282	6120733	2391815	617560	97794	70961	NA									
12	1455847	9182448	8261734	8373519	4994670	1885764	882915	241387	NA										
13	1128853	7675536	8515497	6467241	4505204	1502376	460521	NA											
14	1380818	11547624	8890421	7964029	4951038	1980364	NA												
15	2195835	12381318	10390839	7516444	4968713	NA													
16	2068049	14178820	11164349	7740463	NA														
17	1747083	11599608	8808101	NA															
18	3294583	15210026	NA																
19	4664157	NA																	

Cass Business School

The Double Chain Ladder Model

Payments triangle

	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19
1	51645	513057	747581	554656	426090	211996	212916	16199	9091	36933	0	0	0	0	0	0	0	0	0
2	143607	1006115	910371	735878	593070	765997	614642	245482	116065	14633	36298	164636	14601	66826	6415	11400	0	0	NA
3	345758	1467254	1291694	1236995	1127060	779156	391920	844780	94346	229871	12232	11210	20826	84329	9938	16898	0	NA	NA
4	408108	1875253	1809624	1859877	1806412	1422161	761701	306739	109769	139582	53448	36557	0	6731	0	0	NA	NA	NA
5	711788	3253701	2695979	2592550	3376797	2100946	923045	434936	124256	29942	23026	324	58834	31180	12306	NA	NA	NA	NA
6	941448	3614819	3273886	4479163	3841136	2032530	1241700	471996	120135	59047	5081	295	9393	0	NA	NA	NA	NA	NA
7	1221479	5814000	5904668	7112406	5320976	2425835	856998	196958	133568	40099	11797	65669	98728	NA	NA	NA	NA	NA	NA
8	1684782	8163947	7609088	7722323	6298256	1981161	830186	580355	197501	124446	63687	28557	NA						
9	2253183	9479779	7696767	8260492	5871622	2339555	1099429	363351	147355	43520	13782	NA							
10	2042830	8791743	9169217	7864324	5894987	1977707	722425	245391	59786	-1390	NA								
11	1570388	9961564	9669606	8024282	6120733	2391815	617560	97794	70961	NA									
12	1455847	9182448	8261734	8373519	4994670	1885764	882915	241387	NA										
13	1128853	7675536	8515497	6467241	4505204	1502376	460521	NA											
14	1380818	11547624	8890421	7964029	4951038	1980364	NA												
15	2195835	12381318	10390839	7516444	4968713	NA													
16	2068040	14170020	11164349	7740463	NA														
17	1747083	11599608	8808101	NA		NA													
18	3294583	15210026	NA			NA													
10	4664157	NA	NA	NA		NA													

Cass Business School
CITY UNIVERSITY LONDON

The Double Chain Ladder Model

The reserve per underwriting year

	reserve	proportion of toal reserve
$\mathbf{1}$	$0.000000 \mathrm{e}+00$	0.00
2	$8.304134 \mathrm{e}+02$	0.00
3	$1.073025 \mathrm{e}+02$	0.00
4	$8.348906 \mathrm{e}+02$	0.00
5	$4.007342 \mathrm{e}+03$	0.00
6	$3.141223 \mathrm{e}+04$	0.00
7	$1.417988 \mathrm{e}+05$	0.00
8	$2.498179 \mathrm{e}+05$	0.00
9	$3.595187 \mathrm{e}+05$	0.00
10	$3.824873 \mathrm{e}+05$	0.00
11	$5.252174 \mathrm{e}+05$	0.00
12	$6.315314 \mathrm{e}+05$	0.00
13	$9.770538 \mathrm{e}+05$	0.01
14	$2.549259 \mathrm{e}+06$	0.01
15	$5.449377 \mathrm{e}+06$	0.03
16	$1.543851 \mathrm{e}+07$	0.08
17	$2.174178 \mathrm{e}+07$	0.11
18	$4.445951 \mathrm{e}+07$	0.23
19	$9.897470 \mathrm{e}+07$	0.52

The Double Chain Ladder Model

The reserve per underwriting year

	reserve	proportion of toal reserve
1	$0.000000 \mathrm{e}+00$	0.00
2	$8.304134 \mathrm{e}+02$	0.00
3	$1.073025 \mathrm{e}+02$	0.00
4	$8.348906 \mathrm{e}+02$	0.00
5	$4.007342 \mathrm{e}+03$	0.00
6	$3.141223 \mathrm{e}+04$	0.00
7	$1.417988 \mathrm{e}+05$	0.00
8	$2.498179 \mathrm{e}+05$	0.00
9	$3.595187 \mathrm{e}+05$	0.00
10	$3.824873 \mathrm{e}+05$	0.00
11	$5.252174 \mathrm{e}+05$	0.00
12	$6.315314 \mathrm{e}+05$	0.00
13	$9.770538 \mathrm{e}+05$	0.01
14	$2.549259 \mathrm{e}+06$	0.01
15	$5.449377 \mathrm{e}+06$	0.03
16	$1.543851 \mathrm{e}+07$	0.08
17	$2.174178 \mathrm{e}+07$	0.11
18	$4.445951 \mathrm{e}+07$	0.23
19	$9.897470 \mathrm{e}+07$	0.52

The Double Chain Ladder Model

Summary of the major drawback of classical Chain Ladder (and thus the basic Double Chain Ladder method):

The lack of sufficient data in the most recent underwriting years yields to a severity inflation estimation being too instable and thus not trustable in those most recent years.

Even worse, those most recent underwriting years account for the very major part of the reserve.

Cass Business School

CITY UNIVERSITY LONDON

RBNS preserving Double Chain Ladder

Solution: Incorperate expert knowledge

RBNS preserving Double Chain Ladder

The incurred triangle:

$>$ It is not data, but a mixture of data and expert knowledge
$>$ It contains payments and case estimates of RBNS claimes

RBNS preserving Double Chain Ladder

> From the incurred triangle, one can extract the RBNS part estimated by the case department.
$>$ The RBNS case estimates differ from the DCL RBNS estimates

Cass Business School CITY UNIVERSITY LONDON

RBNS preserving Double Chain Ladder

	RBNS via DCL	RBNS via case estimates	diff/ultimate
$\mathbf{1}$	0	0	0.0000000000
$\mathbf{2}$	830	0	0.0001524044
$\mathbf{3}$	107	4011	0.0004901895
$\mathbf{4}$	835	-9524	0.0009776366
$\mathbf{5}$	4007	36500	0.0019828617
$\mathbf{6}$	29477	5000	0.0012162334
$\mathbf{7}$	138978	1381	0.0046895341
$\mathbf{8}$	244550	92278	0.0042858333
$\mathbf{9}$	352419	57627	0.0077738288
$\mathbf{1 0}$	369966	190335	0.0048338207
$\mathbf{1 1}$	506266	241142	0.0067846411
$\mathbf{1 2}$	602066	1444	0.0167014947
$\mathbf{1 3}$	929374	1210062	0.0089660533
$\mathbf{1 4}$	2453703	2719667	0.0067760876
$\mathbf{1 5}$	5301958	6123466	0.0190207477
$\mathbf{1 6}$	15190206	9249185	0.1206529140
$\mathbf{1 7}$	21248200	13099480	0.1888002860
$\mathbf{1 8}$	42539709	24828096	0.2802813405
$\mathbf{1 9}$	74094249	31454377	0.4114369497

Cass Business School

RBNS preserving Double Chain Ladder

	RBNS via DCL	RBNS via case estimates	diff/ultimate
$\mathbf{1}$	0	0	0.0000000000
$\mathbf{2}$	830	0	0.0001524044
$\mathbf{3}$	107	4011	0.0004901895
$\mathbf{4}$	835	-9524	0.0009776366
$\mathbf{5}$	4007	36500	0.0019828617
$\mathbf{6}$	29477	5000	0.0012162334
$\mathbf{7}$	138978	1381	0.0046895341
$\mathbf{8}$	244550	92278	0.0042858333
$\mathbf{9}$	352419	57627	0.0077738288
$\mathbf{1 0}$	369966	190335	0.0048338207
$\mathbf{1 1}$	506266	241142	0.0067846411
$\mathbf{1 2}$	602066	1444	0.0167014947
$\mathbf{1 3}$	929374	1210062	0.0089660533
$\mathbf{1 4}$	2453703	2719667	0.0067760876
$\mathbf{1 5}$	5301958	6123466	0.0190207477
$\mathbf{1 6}$	15190206	9249185	0.1206529140
$\mathbf{1 7}$	21248200	13099480	0.1888002860
$\mathbf{1 8}$	42539709	24828096	0.2802813405
$\mathbf{1 9}$	74094249	31454377	0.4114369497

The values of the severity inflation estimates in the most recent calendar years result in a big difference between DCL and case estimates based RBNS numbers

RBNS preserving Double Chain Ladder

What does RBNS preserving Double Chain Ladder (PDCL) do?

$>$ PDCL preserves the RBNS case estimates.
> Hereby, the RBNS reserve part is not just replaced by the case estimates.
$>$ The DCL parameters estimates are adjusted by the use of the incurred triangle.
$>$ Therefore, PDCL estimates the the exact RBNS case estimates but also corrects the IBNR estimates.

RBNS preserving Double Chain Ladder

Severity inflation

The Double Chain Ladder package

Cass Business School

CITY UNIVERSITY LONDON

Visualizing the data: the histogram

REPORTING

A	Counts data							
C		1	2	3	4	5	6	7
C	1							
I	2							
D	3							
E	4							
N	5							
T	6							
	7							

Cass Business School CITY UNIVERSITY LONDON

The kernel: parameter estimation using DCL

dcl.estimation() ,bdcl.estimation(), idcl.estimation(),pdcl.prediction()dcl.estimation $\{\mathrm{DCL}\}$

R Documentation

Parameter estimation - Double Chain Ladder model

Description

Compute the estimated parameters in the model (delay parameters, severity underwriting inflation, severity mean and variance) using the Double Chain Ladder method.

Usage
dcl.estimation(Xtriangle , Ntriangle , adj $=1$, Tables $=$ TRUE , num.dec $=4$)

Arguments

Xtriangle The paid run-off triangle: incremental aggregated payments. It should be a matrix with incremental aggregated payments located in the upper triangle and the lower triangle consisting in missing or zero values.
Ntriangle The counts data triangle: incremental number of reported claims. It should be a matrix with the observed counts located in the upper triangle and the lower triangle consisting in missing or zero values. It should has the same dimension as Xtriangle (both in the same aggregation level (quarters, years,etc.))
adj Method to adjust the estimated delay parameters for the distributional model. It should be 1 (default value) or 2. See more in details below.
Tables Logical. If TRUE (default) it is showed a table with the estimated parameters.
num. dec Number of decimal places used to report numbers in the tables (if Tables=TRUE).

The kernel: parameter estimation using DCL

- The function Plot.dcl.par() to visualize the break down of the classical chain ladder parameters

```
Plot.dcl.par {DCL}
Plotting the estimated parameters in the DCL model
Description
Show a two by two plot with the estimated parameters in the Double Chain Ladder model
Usage
Plot.dcl.par( dcl.par , type.inflat = 'DCL' )
Arguments
dcl.par A list object with the estimated parameters: the value returned by the functions dcl.estimation,
    bdcl.estimation or idcl.estimation.
type.inflat Method used to estimate the inflation. Possible values are: 'DCL' (default) if it was used
    dcl.estimation, 'BDCL' if bdcl.estimation, and 'IDCL' if idcl.estimation
```

Cass Business School
CITY UNIVERSITY LONDON

The functions in action: an example

P	R Console				
> my.dcl.par<-dcl.estimation(XtriangleBDCL,NtriangleBDCL)					
	delay.par	delay.prob	inflation	severity.mean	severity.var
1	0.0592	0.0592	1.0000	2579.064	286808926
2	0.3098	0.3098	1.1173	2881.570	358036053
3	0.2032	0.2032	1.4947	3855.014	640796811
4	0.1996	0.1996	1.7461	4503.280	874432486
5	0.1388	0.1388	2.1075	5435.263	1273824141
6	0.0440	0.0440	2.0936	5399.464	1257099346
7	0.0227	0.0227	2.2495	5801.697	1451371123
8	0.0095	0.0095	2.1250	5480.521	1295126156
9	0.0018	0.0018	1.9028	4907.442	1038433681
10	0.0029	0.0029	2.0197	5208.871	1169918179
11	0.0002	0.0002	2.0704	5339.587	1229373075
12	0.0026	0.0026	2.2666	5845.709	1473474978
13	0.0019	0.0019	2.3157	5972.242	1537953134
14	0.0032	0.0032	2.4747	6382.359	1756429648
15	-0.0002	0.0006	2.3829	6145.592	1628530112
16	0.0013	0.0000	2.8391	7322.296	2311867264
17	-0.0004	0.0000	3.1815	8205.383	2903127034
18	0.0000	0.0000	4.1747	10766.824	4998544792
19	0.0000	0.0000	6.7501	17409.045	13068274219
mean.factor mean.factor.adj variance.factor					
1	2579.002	25	9.064	286808926	
> Plot.dcl.par(my.dcl.par)					
>					

\mathbb{P}

R Graphics: Device 2 (ACTIVE)

Parameter estimates in two cases: the basic DCL model (only mean specifications) and the distributional model.

Cass Business School CITY UNIVERSITY LONDON

The best estimate: RBNS/IBNR split using DCL

- The function dcl.predict()

```
dcl.predict {DCL}
    R Documentation
Pointwise predictions (RBNS/IBNR split)
Description
Pointwise predictions by calendar years and rows of the outstanding liabilities. The predictions are splitted between RBNS and IBNR claims.
Usage
dcl.predict( dcl.par , Ntriangle , Model = 2 , Tail = TRUE , Tables = TRUE , summ.by="diag", num.dec = 2 )
Arguments
dcl.par A list object with the estimated parameters: the value returned by the functions dcl.estimation, bdcl.estimation or
    idcl.estimation.
Ntriangle Optional. The counts data triangle: incremental number of reported claims. It should be a matrix with the observed counts located in
    the upper triangle and the lower triangle consisting in missing or zero values. It should has the same dimension as the Xtriangle
    (both in the same aggregation level (quarters, years,etc.)) used to derive dcl.par
Model Possible values are 0,1 or 2 (default). See more details below.
Tail Logical. If TRUE (default) the tail is provided.
Tables Logical. If TRUE (default) it is shown a table with the predicted outstanding liabilities in the future calendar periods
    (summ.by="diag") or by underwriting period (summ.by="row").
summ.by A character value such as "diag", "row" or "cell"
num.dec Number of decimal places used to report numbers in the tables. Used only if Tables=TRUE
```


Details

```
If Model \(=0\) or Model \(=1\) then the predictions are calculated using the DCL model parameters in assumptions M1-M3 (general delay parameters, see Martinez-Miranda, Nielsen and Verrall 2012). If Model=2 the adjusted delay probabilities (distributional model D1-D4) are considered. By
```


RBNS claims

DCL model
$\hat{\pi}_{l} \hat{\mu} \hat{\gamma}_{i}$
counts

The full cash-flow: Bootstrapping using DCL

- The function dcl.boot()

```
dcl.boot {DCL}
Bootstrap distribution: the full cashflow
Description
Provide the distribution of the IBNR, RBNS and total (RBNS+IBRN) reserves by calendar years and rows using bootstrapping.
Usage
dcl.boot(dcl.par, sigma2, Ntriangle, boot.type = 2, B = 999, Tail = TRUE, summ.by = "diag", Tables = TRUE, num.dec = 2
Arguments
dcl.par A list object with the estimated parameters: the value returned by the functions dcl.estimation, bdcl.estimation or idcl.estimation.
sigma2 Optional. The variance of the individual payments in the first underwriting period.
Ntriangle The counts data triangle: incremental number of reported claims. It should be a matrix with the obseved counts located in the upper triangle and the lower triangle
    consisting in missing or zero values. It should be the same triangle used to get the value passed by the argument dcl.par.
boot.type Choose between values 1, to provide only the variance process, or 2 (default), to take into account the uncertainty of the parameters.
B The number of simulations in the bootstrap algorithm. The defaul value is }999
Tail Logical. If TRUE (default) the tail is provided.
surm.by A character value such as "diag", "row" or "cell"
Tables Logical. If TRUE (defaul) it is showed a table with the summary (mean, standard deviation, 1%,5%,50%,95%,99%) of the distribution of the outstanding liabilities
    in the future calendar periods (if summ.by="diag") or by underwriting period (if summ.by="row").
num.dec Number of decimal places used to report numbers in the tables. Used only if Tables=TRUE
Details
```

- The function Plot.cashflow()

Cass Business School
CITY UNIVERSITY LONDON

The functions in action: an example

Cass Business School CITY UNIVERSITY LONDON

The functions in action: an example

Validation

\square The function validating.incurred()

Testing results against experience:

1. Cut $c=1,2, \ldots$. diagonals (periods) from the observed triangle.
2. Apply the estimation methods.
3. Compare forecasts and actual values.

Validation

Summary: the content of the package

