Loss modelling with mixtures of Erlang distributions

Roel Verbelen

Faculty of Economics and Business KU Leuven, Belgium roel.verbelen@kuleuven.be

R in Insurance Cass Business School, London, UK

July 14, 2014

Probability density function

$$f_X(x; \boldsymbol{\alpha}, \boldsymbol{r}, \theta) = \sum_{j=1}^{M} \alpha_j \frac{x^{r_j - 1} e^{-x/\theta}}{\theta^{r_j} (r_j - 1)!}$$

Probability density function

$$f_X(x; \boldsymbol{\alpha}, \boldsymbol{r}, \theta) = \sum_{j=1}^{M} \alpha_j \frac{x^{r_j - 1} e^{-x/\theta}}{\theta^{r_j} (r_j - 1)!}$$

for x > 0 with

- number of Erlangs M;

Probability density function

$$f_X(x; \boldsymbol{\alpha}, \boldsymbol{r}, \theta) = \sum_{j=1}^{M} \alpha_j \frac{x^{r_j - 1} e^{-x/\theta}}{\theta^{r_j} (r_j - 1)!}$$

- number of Erlangs M;
- weights $\frac{\alpha}{\alpha} = (\alpha_1, \dots, \alpha_M)$ with $\alpha_j > 0$ and $\sum_{i=1}^{M} \alpha_j = 1$;

Probability density function

$$f_X(x; \boldsymbol{\alpha}, \boldsymbol{r}, \theta) = \sum_{j=1}^{M} \alpha_j \frac{x^{r_j - 1} e^{-x/\theta}}{\theta^{r_j} (r_j - 1)!}$$

- number of Erlangs M;
- weights $\alpha = (\alpha_1, \dots, \alpha_M)$ with $\alpha_j > 0$ and $\sum_{i=1}^M \alpha_i = 1$;
- positive integer shape parameters $\mathbf{r} = (r_1, \dots, r_M);$

Probability density function

$$f_X(x; \alpha, \mathbf{r}, \boldsymbol{\theta}) = \sum_{j=1}^{M} \alpha_j \frac{x^{r_j - 1} e^{-x/\boldsymbol{\theta}}}{\boldsymbol{\theta}^{r_j} (r_j - 1)!}$$

- number of Erlangs M;
- weights $\alpha = (\alpha_1, \dots, \alpha_M)$ with $\alpha_j > 0$ and $\sum_{i=1}^M \alpha_i = 1$;
- positive integer shape parameters $\mathbf{r} = (r_1, \dots, r_M);$
- common scale parameter θ .

Probability density function

$$f_X(x; \boldsymbol{\alpha}, \boldsymbol{r}, \theta) = \sum_{i=1}^{M} \alpha_i \frac{x^{r_j - 1} e^{-x/\theta}}{\theta^{r_j} (r_j - 1)!}$$

- number of Erlangs M;
- weights $\alpha = (\alpha_1, \dots, \alpha_M)$ with $\alpha_j > 0$ and $\sum_{i=1}^{M} \alpha_j = 1$;
- positive integer shape parameters $\mathbf{r} = (r_1, \dots, r_M)$;
- common scale parameter θ .

Figure: Varying the shape r with scale $\theta = 2$.

Probability density function

$$f_X(x; \alpha, r, \theta) = \sum_{i=1}^{M} \alpha_i \frac{x^{r_i - 1} e^{-x/\theta}}{\theta^{r_i} (r_i - 1)!}$$

- number of Erlangs M;
- weights $\alpha = (\alpha_1, \dots, \alpha_M)$ with $\alpha_j > 0$ and $\sum_{i=1}^{M} \alpha_j = 1$;
- positive integer shape parameters $\mathbf{r} = (r_1, \dots, r_M)$;
- common scale parameter θ .

Figure: Varying the scale θ with shape r = 2.

Suitable for loss modeling since

• versatile classes of distributions;

- versatile classes of distributions;
- mathematically tractable allowing analytical expressions of quantities of interest;

- versatile classes of distributions;
- mathematically tractable allowing analytical expressions of quantities of interest;
- fitting procedure based on the EM algorithm;

- versatile classes of distributions;
- mathematically tractable allowing analytical expressions of quantities of interest;
- fitting procedure based on the EM algorithm;
- able to deal with censored and/or truncated data;

- · versatile classes of distributions;
- mathematically tractable allowing analytical expressions of quantities of interest;
- fitting procedure based on the EM algorithm;
- able to deal with censored and/or truncated data;
- implemented in R, making use of the package doParallel.

Secura Re data I

- Price an unlimited excess-loss layer above an operational priority R.
- 371 automobile claims from 1988 until 2001 from several European insurers, corrected, among others, for inflation.
- Left truncated at 1 200 000 euro, since the claims are only reported to the reinsurer if they are larger.

Secura Re data II

Pa	Parameter estimates						
rj	α_j	θ					
5	0.971	360 096.1					
15	0.029						

(a) Fitted density function and histogram.

(b) Fitted survival and Kaplan-Meier.

Secura Re data III

Explicit expressions for

• the net premium $\Pi(R)$ of an excess-of-loss reinsurance contract with retention level $R > 1\,200\,000$

$$\Pi(R) = E((X - R)_+ \mid X > 1200000);$$

the excess-loss distribution

$$X - R \mid X > R$$

which is again a mixture of Erlangs with the same scale $\boldsymbol{\theta}$ but with different weights.

References

Verbelen, R., Gong, L., Antonio, K., Badescu, A., and Sheldon, L. [2014] Fitting mixtures of Erlangs to censored and truncated data using the EM algorithm.

Submitted for publication.

Verbelen, R. [2014]

www.econ.kuleuven.be/roel.verbelen

Additional examples.

R code and illustration.

Secura Re data IV

Table: Non-parametric, Hill, GP and Mixture of Erlangs-based estimates for $\Pi(R)$.

R	Non-Parametric	Hill	GP	Mixture of Erlangs
3 000 000	161 728.1	163 367.4	166 619.6	163 987.7
3 500 000	108 837.2	108 227.2	111 610.4	110 118.5
4 000 000	74 696.3	75 581.4	79 219.0	77 747.6
4 500 000	53 312.3	55 065.8	58714.1	55 746.3
5 000 000	35 888.0	41 481.6	45 001.6	39 451.6
7 500 000	1074.5	13 944.5	16 393.3	4018.6
10 000 000	0.0	6434.0	8087.8	159.6

Secura Re data V

- Fitted Erlang mixture estimates the net premium using intrinsically all data points, but postulate a ligher tail.
- Resulting net premiums are lower and differ strongly at the high-end of the sample range.
- Reinsurer should carefully investigate the tail behavior.

Secura Re data VI

- In order to estimate $\Pi(R)$ for values of R smaller than the threshold, a global statistical model is needed.
- Based on the mean excess plot, Beirlant et al. (2004) propose a mixture of an exponential and a Pareto (body-tail approach).
- The fitting procedure for Erlang mixtures guides us to a mixture with two components, implicitly, in a data driven way.

Secura Re data VII

Table: Non-parametric, Exp-Par and Mixture of Erlangs-based estimates for $\Pi(R)$.

R	Non-Parametric	Exp-Par	Mixture of Erlangs
1 250 000	981 238.0	944 217.8	981 483.1
1500000	760 637.6	734 371.6	760 912.9
1750000	583 403.6	571 314.1	582 920.1
2 000 000	445 329.8	444 275.5	444 466.6
2 250 000	340 853.2	344 965.2	339 821.4
2500000	263 052.7	267 000.7	262 314.6

Censored and truncated data

Censored sample $\mathcal{X} = \{(I_i, u_i) | i = 1, \dots, n\}$, truncated to the range $[t^i, t^u]$.

- l_i and u_i : lower and upper censoring points.
- t' and t'': lower and upper truncation points.
- $t^{l} < l_{i} < u_{i} < t^{u}$ for i = 1, ..., n.
- t'=0 and $t^u=\infty$ mean no truncation from below and above, resp.

Uncensored:
$$t^{l} \leq l_{i} = u_{i} =: x_{i} \leq t^{u}$$

Censoring status:

Left Censored: $t' = I_i < u_i < t^u$ Right Censored: $t' < I_i < u_i = t^u$

Interval Censored: $t' < I_i < u_i < t^u$

Complete data

Complete data $\mathcal{Y} = \{(x_i, \mathbf{z}_i) | i = 1 \dots n\}$ containing all uncensored observations x_i and their corresponding component-indicator vector \mathbf{z}_i with

$$z_{ij} = egin{cases} 1 & ext{if observation } x_i ext{ comes from } j ext{th component density } f(x; r_j, heta) \ 0 & ext{otherwise} \end{cases}$$

for
$$i = 1, ..., n$$
 and $j = 1, ..., M$.

Complete data log-likelihood

Complete data log-likelihood

$$I(\boldsymbol{\Theta}; \mathcal{Y}) = \sum_{i=1}^{n} \sum_{i=1}^{M} z_{ij} \ln \left(\beta_{j} f(\mathbf{x}_{i}; \mathbf{t}^{I}, \mathbf{t}^{u}, \mathbf{r}_{j}, \theta) \right) ,$$

with

$$\beta_j = \alpha_j \cdot \frac{F(t^u; r_j, \theta) - F(t^l; r_j, \theta)}{F(t^u; \Theta) - F(t^l; \Theta)}$$

and

$$f(x_i; t^l, t^u, r_j, \theta) = \frac{f(x_i; r_j, \theta)}{F(t^u; r_i, \theta) - F(t^l; r_i, \theta)}.$$

E step

E-step
$$\begin{aligned} Q(\boldsymbol{\Theta};\boldsymbol{\Theta}^{(k-1)}) &= E(I(\boldsymbol{\Theta};\mathcal{Y}) \mid \mathcal{X};\boldsymbol{\Theta}^{(k-1)}) \\ &= Q_u(\boldsymbol{\Theta};\boldsymbol{\Theta}^{(k-1)}) + Q_c(\boldsymbol{\Theta};\boldsymbol{\Theta}^{(k-1)}), \end{aligned}$$

split in an uncensored and censored part. E-step boils down to computing

$$^{u}z_{ij}^{(k)} = P(Z_{ij} = 1 \mid x_i, t^i, t^u; \Theta^{(k-1)}) = \frac{\alpha_j^{(k-1)}f(x_i; r_j, \theta^{(k-1)})}{\sum_{m=1}^{M}\alpha_m^{(k-1)}f(x_i; r_m, \theta^{(k-1)})},$$

for $i \in U$ and $j = 1, \dots, M$.

$$^{c}z_{ij}^{(k)} = P(Z_{ij} = 1 \mid l_i, u_i, t', t^u; \Theta^{(k-1)}) = \frac{\alpha_j^{(k-1)}\left(F(u_i; r_j, \theta^{(k-1)}) - F(l_i; r_j, \theta^{(k-1)})\right)}{\sum_{m=1}^{M} \alpha_m^{(k-1)}\left(F(u_i; r_m, \theta^{(k-1)}) - F(l_i; r_m, \theta^{(k-1)})\right)},$$

for $i \in C$ and $j = 1, \ldots, M$.

$$E\left(X_i \left| Z_{ij} = 1, I_i, u_i, t^I, t^u; \theta^{(k-1)} \right.\right) = \frac{r_j \theta^{(k-1)} \left(F(u_i; r_j + 1, \theta^{(k-1)}) - F(I_i; r_j + 1, \theta^{(k-1)})\right)}{F(u_i; r_j, \theta^{(k-1)}) - F(I_i; r_j, \theta^{(k-1)})} \;,$$

for $i \in C$ and $i = 1, \dots, M$

M step

$$\mathbf{\Theta}^{(k)} = rg \max_{\mathbf{\Theta}} Q(\mathbf{\Theta}; \mathbf{\Theta}^{(k-1)})$$

leading to

$$\begin{cases} \beta_{j}^{(k)} = \frac{\sum_{i \in U} {}^{u} z_{ij}^{(k)} + \sum_{i \in C} {}^{c} z_{ij}^{(k)}}{n} & \text{for } j = 1, \dots, M, \\ \theta^{(k)} = \frac{\left(\sum_{i \in U} x_{i} + \sum_{i \in C} E\left(X_{i} \left| I_{i}, u_{i}, t^{i}, t^{u}; \theta^{(k-1)}\right.\right)\right) / n - T^{(k)}}{\sum_{j=1}^{M} \beta_{j}^{(k)} r_{j}}, \end{cases}$$

with

$$T^{(k)} = \sum_{j=1}^{M} \beta_{j}^{(k)} \frac{\left(t'\right)^{r_{j}} e^{-t'/\theta} - \left(t^{u}\right)^{r_{j}} e^{-t^{u}/\theta}}{\theta^{r_{j}-1}(r_{j}-1)! \left(F(t^{u}; r_{j}, \theta) - F(t'; r_{j}, \theta)\right)} \bigg|_{\theta=\theta^{(k)}}.$$

Choice of the shape parameters and of the number of Erlangs in the mixture

- Initial choice of M and shape parameters $r = s \cdot (1, ..., M)$ with s a spread factor.
- Initialization of $\Theta=(\alpha,\theta)$ based on Tijms's proof of denseness (Tijms [1994]):

$$\theta^{(0)} = \frac{\max(\mathbf{x})}{r_M} \quad \text{and} \quad \alpha_j^{(0)} = \frac{\sum_{i=1}^n I\left(r_{j-1}\theta^{(0)} < x_i \leq r_j\theta^{(0)}\right)}{n} \,,$$

- for j = 1, ..., M.
- Apply EM algorithm, adjust the shapes r by shifting r_i by one in a double loop-wise fashion, apply EM algorithm, repeat until likelihood no longer increases.
- Reduce M based on AIC or BIC by deleting the shape r_i with smallest weight α_i , refit and readjust shapes.