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for x > 0 with

- number of Erlangs M;

- weights a = (a1, ..., am) with a; > 0
M
and Zj:l a; =1;

- positive integer shape parameters
r=(n,...,rm);

- common scale parameter 6.
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Figure: Varying the shape r with scale
- common scale parameter 6. 0 =2.
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Figure: Varying the scale 6 with shape
- common scale parameter 6. r=2.
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Why mixtures of Erlangs?

Suitable for loss modeling since

o versatile classes of distributions;

e mathematically tractable allowing analytical expressions of quantities of
interest;

o fitting procedure based on the EM algorithm;
e able to deal with censored and/or truncated data;

o implemented in R, making use of the package doParallel.
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Secura Re data |

o Price an unlimited excess-loss layer above an operational priority R.

e 371 automobile claims from 1988 until 2001 from several European
insurers, corrected, among others, for inflation.

o Left truncated at 1200000 euro, since the claims are only reported to the
reinsurer if they are larger.
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Secura Re data Il
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(b) Fitted survival and Kaplan-Meier. (c) QQ plot.
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Secura Re data Il

Explicit expressions for

e the net premium MM(R) of an excess-of-loss reinsurance contract with
retention level R > 1200000

N(R) = E((X — R)4 | X > 1200000) ;

e the excess-loss distribution
X—R|X>R

which is again a mixture of Erlangs with the same scale 6 but with
different weights.
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Secura Re data EM algorithm
@000 000000

Secura Re data IV

Table: Non-parametric, Hill, GP and Mixture of Erlangs-based estimates for M(R).

R Non-Parametric Hill GP Mixture of Erlangs
3000000 161728.1 163367.4 166619.6 163987.7
3500000 108837.2 108227.2 111610.4 110118.5
4000000 74696.3 75581.4 79219.0 T7747.6
4500000 53312.3 55065.8 58714.1 55746.3
5000 000 35888.0 41481.6 45001.6 39451.6
7500000 1074.5 139445 16393.3 4018.6

10000000 0.0 6434.0 8087.8 159.6
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EM algorithm

Secura Re data
000000
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Secura Re data V

o Fitted Erlang mixture estimates the net premium using intrinsically all
data points, but postulate a ligher tail.

e Resulting net premiums are lower and differ strongly at the high-end of the
sample range.

o Reinsurer should carefully investigate the tail behavior.
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EM algorithm
000000

Secura Re data
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Secura Re data VI

e In order to estimate IN(R) for values of R smaller than the threshold, a
global statistical model is needed.

o Based on the mean excess plot, Beirlant et al. (2004) propose a mixture
of an exponential and a Pareto (body-tail approach).

o The fitting procedure for Erlang mixtures guides us to a mixture with two
components, implicitly, in a data driven way.
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Secura Re data EM algorithm
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Secura Re data VI

Table: Non-parametric, Exp-Par and Mixture of Erlangs-based estimates for M(R).

R Non-Parametric  Exp-Par  Mixture of Erlangs
1250000 981238.0 944217.8 9814383.1
1500000 760637.6 734371.6 760912.9
1750000 583403.6 571314.1 582920.1
2000000 445329.8 444275.5 444 466.6
2250000 340853.2 344965.2 339821.4
2500000 263052.7 267 000.7 262314.6

Roel Verbelen Loss modelling with mixtures of Erlang distributions 4/10



Secura Re data EM algorithm
0000 ®00000

Censored and truncated data

Censored sample X = {(l;, ;)| i = 1,...,n}, truncated to the range [t/, t“].
e i and u;: lower and upper censoring points.
o t' and t“: lower and upper truncation points.
e t! <<y <t'fori=1,...,n

e t' =0 and tY = co mean no truncation from below and above, resp.

Uncensored: t<lh=u=1x<t"
Censoring status: Left Censored: th=l<u<t'
& ’ Right Censored: th<l<u=t"

Interval Censored: t' < | < uj < t"
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Secura Re data EM algorithm
0000 O@0000

Complete data

Complete data Y = {(x;, z;)|i = 1...n} containing all uncensored observations
x; and their corresponding component-indicator vector z; with

1 if observation x; comes from jth component density f(x; r;, 0)
o
’ 0 otherwise

fori=1,...,nandj=1,..., M.

Roel Verbelen Loss modelling with mixtures of Erlang distributions 6/10



Secura Re data EM algorithm
0000 00@000

Complete data log-likelihood

Complete data log-likelihood

n M
1(©; ) = Z Zz,-j In (ij(x,-; t’, tY, rj,G)) ,

=1 j=1
with

o F(t";r,0) — F(t'; r;,0)
%= . @) F (e )

and

gy f(xi; rj, 0)
it O = ) — R0
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Secura Re data

EM algorithm
0000 000e00
E step
E-step Q(O; 0% M) = E(1(0;Y) | x; 0k 1)
= Qu(©;0" V) + Q.(8;0% V),
split in an uncensored and censored part. E-step boils down to computing
oD f(irs 0k —1)y
W2 = P(Z; =1 x,t, 0% D) = i Ly
Zij ( u | X B b ) ZM71 ag:_l)f(x,-;rm,g(kfl)) '
foricUandj=1,..., M.
k=) (£(yer: 0= F(15r;,0(k—1)
Czii.k) = P(Z,“ =1 ‘ I,‘, uj, t’, tu;@(kil)) = aj (F(UI’JYG ) F(I“JVG ))

Mo (k=1) . k—1)y_f(ror g(k—1)y)
Zm:lam (F(u,,rm,e( ))— F(l;irm, 6 )))

forie Candj=1,..., M.

0= (Fuir+1,00= 1) F(1;r41,0(k—1))
E (X,~ |z, =1, uf,t’,t”;e(k*“) =2 ( k )

Fugiry, 0= 1)~ F(1;3r;,0(k—1)) ’

forie Candj=1,..., M.
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Secura Re data EM algorithm
0000 0000e0

M step
M-step 0" = argmax Q(®; @)
e
leading to
u_ (k) c (k)
ﬁ}”:z"eu % :Z"EC % forj=1,...,M,
o) — (Cicw + Xiec E(Xi |l t', ¢ V)) /o — T
= M o0k g
S8
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Secura Re data EM algorithm
0000 00000e

Choice of the shape parameters and of the number of Erlangs in the mixture

o Initial choice of M and shape parameters r =s-(1,..., M) with s a
spread factor.

o Initialization of ® = («, 8) based on Tijms’s proof of denseness (Tijms

[1994]):
" (5209 < x < 56©)
) _ max(x) © _ D! (0710 < Xi S 1
0" = v and a;’ = " )
forj=1,..., M.

o Apply EM algorithm, adjust the shapes r by shifting r; by one in a double
loop-wise fashion, apply EM algorithm, repeat until likelihood no longer
increases.

e Reduce M based on AIC or BIC by deleting the shape r; with smallest
weight «;, refit and readjust shapes.
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