
Mirai Solutions GmbH

Tödistrasse 48

CH-8002 Zurich

Switzerland

info@mirai-solutions.com

www.mirai-solutions.com

Riccardo Porreca

Roland Schmid

Efficient, consistent and flexible
Credit Default simulation with TRNG
and RcppParallel

© Mirai Solutions GmbH

• Motivation and challenges

• Integrated Market and Default Risk model

• Parallel Random Number Generation techniques with TRNG

• Examples and results

• Summary

Outline

© Mirai Solutions GmbH

Motivation and challenges

• Monte Carlo approach to the simulation of rare and correlated credit default

events in large portfolios

• Desire for efficient, consistent, flexible MC simulation

• parallel execution on multicore architectures

• simulation of a subset of the variables of interest (e.g. sub-portfolios)

• granular details/insight for given scenarios of interest (e.g. individual

contributions)

• exact reproducibility of full-simulation results (fair-playing)

 => control and isolate Monte Carlo effect

• General flexibility of performing fast ad-hoc consistent simulations

• Limitation: (Pseudo)Random Number Generators (RNGs) used to draw

random numbers in Monte Carlo simulations are intrinsically sequential

© Mirai Solutions GmbH

Integrated market and default risk model

• Portfolio of defaultable securities issued by a set of counterparties

• Model market risk in correlation with credit default risk using an integrated

approach

• Market and default risk are intrinsically related

• Dependency must be properly taken into account

• Simplifying assumptions

• Default occurrence determined at counterparty level

• Exactly one security per each counterparty in the portfolio

• We ignore non-defaultable securities subject to market risk only

© Mirai Solutions GmbH

Integrated market and default risk model

• State of the credit environment driving the default of counterparty j in [1,J]

 𝑌𝑗 = 𝛽𝑗𝑍𝑗 + 𝜎𝑗𝜀𝑗 , i.i.d. 𝜀𝑗~𝑁(0, 1)

• Return 𝑟𝑗 drives the market value at horizon (based on the state of the world)

 𝑉𝑗 = 𝑉𝑗
0(1 + 𝑟𝑗)

• Default indicator 𝐷𝑗 =
1, 𝑌𝑗 < 𝜃𝑗
 0, 𝑌𝑗 ≥ 𝜃𝑗

, 𝜃𝑗 ∶ P 𝑌𝑗 < 𝜃𝑗 = 𝑃𝑗
𝐷

• Loss (including occurrence of defaults)

 𝐿𝑗 = 𝑉𝑗
0 − 1 − 𝐷𝑗 𝑉𝑗 +𝐷𝑗 𝑅𝑗 , 0 ≤ 𝑅𝑗≤ 𝑉𝑗

0

• Default events 𝐷𝑗 and losses 𝐿𝑗 inherit the correlation structure of 𝑟𝑗 and 𝑍𝑗

with other counterparties

specific component

(idiosyncratic return)

systemic component

(reflects the state of the world)

© Mirai Solutions GmbH

Integrated market and default risk model

• Assumption: M scenarios of the state of the world are available

𝑍𝑗
(𝑚)

, 𝑟𝑗
(𝑚)

𝑚=1

𝑀

• Monte Carlo realizations from a given market risk model, which we

extend by the occurrence of defaults

• we also assume (WLOG): 𝑍𝑗~𝑁 0, 1 , 𝜎𝑗 = 1 − 𝛽𝑗
2

⇒ 𝜃𝑗 = Φ−1 𝑃𝑗
𝐷

𝑌𝑗 = 𝛽𝑗𝑍𝑗 + 1 − 𝛽𝑗
2 𝜀𝑗

𝑉𝑗 = 𝑉𝑗
0(1 + 𝑟𝑗)

𝐷𝑗 =
1, 𝑌𝑗 < Φ−1 𝑃𝑗

𝐷

0, 𝑌𝑗 ≥ Φ−1 𝑃𝑗
𝐷

𝐿𝑗 = 𝑉𝑗
0 − 1 − 𝐷𝑗 𝑉𝑗 +𝐷𝑗 𝑅𝑗

© Mirai Solutions GmbH

Integrated market and default risk model

• Assumption: M scenarios of the state of the world are available

𝑍𝑗
(𝑚)

, 𝑟𝑗
(𝑚)

𝑚=1

𝑀

• Monte Carlo realizations from a given market risk model, which we

extend by the occurrence of defaults

• we also assume (WLOG): 𝑍𝑗~𝑁 0, 1 , 𝜎𝑗 = 1 − 𝛽𝑗
2

⇒ 𝜃𝑗 = Φ−1 𝑃𝑗
𝐷

• Monte Carlo approach for simulating the integrated model:

• combine 𝑉𝑗 and 𝑍𝑗 for the available scenarios with independent

realizations of the idiosyncratic returns 𝜀𝑗

• for each scenario m in [1,M], generate K samples of 𝜀𝑗 to obtain M*K

realizations of the credit environment return 𝑌𝑗

• combined simulation size M*K high enough to capture the rare nature of

default events

© Mirai Solutions GmbH

Efficient, consistent, flexible MC simulation

• Exact reproducibility of full-simulation results

• parallel execution on multicore architectures

• simulation of a subset of the variables of interest (e.g. sub-portfolios)

• granular details/insight for given scenarios of interest (e.g. individual

contributions)

• Tina’s Random Number Generator Library (TRNG)

“state of the art C++ pseudo-random number generator library for

sequential and parallel Monte Carlo simulations”

 [H. Bauke, http://numbercrunch.de/trng]

© Mirai Solutions GmbH

Efficient, consistent, flexible MC simulation

J counterparties

M
*K

 s
im

u
la

ti
o

n
s

• TRNG provides a collection of parallel-oriented

random number engines

• simple structure (LFSR sequences)

• strong mathematical properties

• possible to manipulate the internal state

• equipped with powerful operations

• jump

• split

• Available to the R community via rTRNG package

• being developed at Mirai Solutions

 => install_github("miraisolutions/rTRNG")

© Mirai Solutions GmbH

Efficient, consistent, flexible MC simulation

J counterparties

M
*K

 s
im

u
la

ti
o

n
s

• TRNG provides a collection of parallel-oriented

random number engines

• simple structure (LFSR sequences)

• strong mathematical properties

• possible to manipulate the internal state

• equipped with powerful operations

• jump

• split

• Available to the R community via rTRNG package

• being developed at Mirai Solutions

 => install_github("miraisolutions/rTRNG")

© Mirai Solutions GmbH

Efficient, consistent, flexible MC simulation

J counterparties

M
*K

 s
im

u
la

ti
o

n
s

• TRNG provides a collection of parallel-oriented

random number engines

• simple structure (LFSR sequences)

• strong mathematical properties

• possible to manipulate the internal state

• equipped with powerful operations

• jump

• split

• Available to the R community via rTRNG package

• being developed at Mirai Solutions

 => install_github("miraisolutions/rTRNG")

© Mirai Solutions GmbH

Efficient, consistent, flexible MC simulation

J counterparties

M
*K

 s
im

u
la

ti
o

n
s

• Parallel execution

• Jump to the beginning of a given

chunk of simulations (block splitting)

• Sub-portfolio simulation

• Split and simulate only the relevant

counterparties

• Insight for given scenarios of interest

• Jump to individual simulations

• Any combination of the above

© Mirai Solutions GmbH

Efficient, consistent, flexible MC simulation

J counterparties

M
*K

 s
im

u
la

ti
o

n
s

• Parallel execution

• Jump to the beginning of a given

chunk of simulations (block splitting)

• Sub-portfolio simulation

• Split and simulate only the relevant

counterparties

• Insight for given scenarios of interest

• Jump to individual simulations

• Any combination of the above

© Mirai Solutions GmbH

Efficient, consistent, flexible MC simulation

J counterparties

M
*K

 s
im

u
la

ti
o

n
s

• Parallel execution

• Jump to the beginning of a given

chunk of simulations (block splitting)

• Sub-portfolio simulation

• Split and simulate only the relevant

counterparties

• Insight for given scenarios of interest

• Jump to individual simulations

• Any combination of the above

© Mirai Solutions GmbH

Efficient, consistent, flexible MC simulation

J counterparties

M
*K

 s
im

u
la

ti
o

n
s

• Parallel execution

• Jump to the beginning of a given

chunk of simulations (block splitting)

• Sub-portfolio simulation

• Split and simulate only the relevant

counterparties

• Insight for given scenarios of interest

• Jump to individual simulations

• Any combination of the above

© Mirai Solutions GmbH

R(cpp) simulation kernel

• Efficient, consistent, flexible, parallel simulation kernel

• Fast C++ simulation core with Rcpp and RcppParallel

• seamless R and C++ integration

• in memory, thread-safe access to R objects

• TRNG C++ headers and library from rTRNG

• simple yet powerful multi-purpose simulation core

• Assessment on a test portfolio

• J = 6’000 counterparties

• M = 10’000 available market scenario simulations

• K = 100 idiosyncratic simulations for a given market scenario

• fixed 𝛽𝑗 = 0.5

© Mirai Solutions GmbH

Data and interface

 simulationKernel(pf, Z, r,

 J,

 K, mk = seq_len(K * nrow(Z)),

 agg = factor(rep("PF", nrow(pf))),

 seed)

𝑌𝑗 = 𝛽𝑗𝑍𝑗 + 1 − 𝛽𝑗
2 𝜀𝑗

𝑉𝑗 = 𝑉𝑗
0(1 + 𝑟𝑗)

𝐷𝑗 =
1, 𝑌𝑗 < Φ−1 𝑃𝑗

𝐷

0, 𝑌𝑗 ≥ Φ−1 𝑃𝑗
𝐷

𝐿𝑗 = 𝑉𝑗
0 − 1 − 𝐷𝑗 𝑉𝑗 +𝐷𝑗 𝑅𝑗

© Mirai Solutions GmbH

Data and interface

 j
m 1 . . . J
 1 0.5241 -0.484 -0.402 -0.774 -0.702
 . -2.2608 -0.666 -1.003 0.423 0.683
 . -0.0197 -0.174 -0.178 -0.607 -0.858
 . 0.1831 -1.011 -0.488 0.209 0.368
 M -0.3614 0.740 0.928 -0.777 -1.430

 j
m 1 . . . J
 1 -0.512 -0.376 -1.059 -0.165 0.511
 . -0.268 -1.135 -1.318 1.760 -3.088
 . -0.199 0.609 -0.204 1.612 0.474
 . 0.857 0.566 -0.601 0.803 0.626
 M -0.167 -0.736 0.661 1.265 0.981

total nr. of counterparties

 simulationKernel(pf, Z, r,

 J,

 K, mk = seq_len(K * nrow(Z)),

 agg = factor(rep("PF", nrow(pf))),

 seed) initial RNG state

𝑌𝑗 = 𝛽𝑗𝑍𝑗 + 1 − 𝛽𝑗
2 𝜀𝑗

𝑉𝑗 = 𝑉𝑗
0(1 + 𝑟𝑗)

𝐷𝑗 =
1, 𝑌𝑗 < Φ−1 𝑃𝑗

𝐷

0, 𝑌𝑗 ≥ Φ−1 𝑃𝑗
𝐷

𝐿𝑗 = 𝑉𝑗
0 − 1 − 𝐷𝑗 𝑉𝑗 +𝐷𝑗 𝑅𝑗

j V0 R beta PD rtng ...
2 32606970 910000 0.707 0.0025 BBB .
3 8932752 92800 0.707 0.0010 A .
6 564931 335675 0.707 0.1000 CCC .
7 3494502 82000 0.707 0.0400 B .
9 6679886 1000500 0.707 0.0100 BB .

© Mirai Solutions GmbH

Data and interface

 j
m 1 . . . J
 1 0.5241 -0.484 -0.402 -0.774 -0.702
 . -2.2608 -0.666 -1.003 0.423 0.683
 . -0.0197 -0.174 -0.178 -0.607 -0.858
 . 0.1831 -1.011 -0.488 0.209 0.368
 M -0.3614 0.740 0.928 -0.777 -1.430

 j
m 1 . . . J
 1 -0.512 -0.376 -1.059 -0.165 0.511
 . -0.268 -1.135 -1.318 1.760 -3.088
 . -0.199 0.609 -0.204 1.612 0.474
 . 0.857 0.566 -0.601 0.803 0.626
 M -0.167 -0.736 0.661 1.265 0.981

j V0 R beta PD rtng ...
2 32606970 910000 0.707 0.0025 BBB .
3 8932752 92800 0.707 0.0010 A .
6 564931 335675 0.707 0.1000 CCC .
7 3494502 82000 0.707 0.0400 B .
9 6679886 1000500 0.707 0.0100 BB .

Value

Usage

 agg
mk 1 . . A
 1 2942986 2144142 2551616 2128115
 . 3269994 1886979 2881280 1447524
 . 3874471 1711273 2544507 3696855
 . 2809653 3757694 1816909 3071337
 . 4100697 2123775 2544716 1878057
 . 2106241 4758459 4014828 3573142
 M*K 2045032 2990315 4636829 2588612

aggregation criterion

simulations of interest

total nr. of counterparties

 simulationKernel(pf, Z, r,

 J,

 K, mk = seq_len(K * nrow(Z)),

 agg = factor(rep("PF", nrow(pf))),

 seed) initial RNG state

© Mirai Solutions GmbH

Examples and results

• ES99: average loss in the 1% worst scenarios

• Consistent simulation for the sub-portfolio with BBB rating

L_rtng <- simulationKernel(pf, Z, r, J, K,
 agg = pf$rtng, seed = s)

L_BBB <- simulationKernel(pf %>% filter(rtng == "BBB"),
 Z, r, J, K, seed = s)
all.equal(c(L_BBB), L_rtng[, "BBB"], check.attributes = FALSE)
[1] TRUE
ES99_BBB <- ES99(L_BBB)
9878920788

ES99_rtng <- ES99(L_rtng)
BBB AA AAA A BB ...
9878920788 8620051762 7468245838 4796596354 1190520347 ...

• Full simulation (multi-threaded)

• Aggregation criterion: rating (credit quality)

© Mirai Solutions GmbH

Examples and results

• Risk insight for BBB

• Contribution of individual counterparties to the BBB total ES99

• Focus on the top 3 counterparties (highest contribution)

pfBBB <- pf %>% filter(rtng == "BBB")
L_jBBBtail <- simulationKernel(pfBBB, Z, r, J, K, agg = pfBBB$j,
 mk = tail99(L_BBB), seed = s)
ContrES99_jBBB <- colMeans(L_jBBBtail)
all.equal(sum(ContrES99_jBBB), ES99_BBB, check.attributes = FALSE)
[1] TRUE

pftop3BBB <- pfBBB %>% filter(j %in% top3jBBB)
L_top3BBB <- simulationKernel(pftop3BBB, Z, r, J, K,
 agg = pftop3BBB$j, seed = s)
ES99_top3BBB <- ES99(L_top3BBB)
j V0 R ES99 ContrES99 Div Contr/V0
2 9444041000 278250000 4720889738 4277383374 0.9060545 0.4529188
8 3260697000 91000000 1672364832 999636420 0.5977382 0.3065714
70 298111300 13483307 963482756 436598485 0.4531461 1.4645486

© Mirai Solutions GmbH

Examples and results

• What-if scenario

• Top 3 BBB counterparties downgraded => PD from 0.0025 to 0.01

• Effect on the BBB total

• New contribution for the full BBB sub-portfolio

All this achieved without re-simulating the whole BBB portfolio!

pfBBBwi <- pf %>% filter(rtng == "BBB") %>%
 mutate(PD = replace(PD, j %in% top3jBBB, 0.01))
pftop3BBBwi <- pfBBBwi %>% filter(j %in% top3jBBB)
L_top3BBBwi <- simulationKernel(pftop3BBBwi, Z, r, J, K,
 agg = pftop3BBBwi$j, seed = s)

L_BBBwi <- L_BBB + (rowSums(L_top3BBBwi) - rowSums(L_top3BBB))
ES99_BBBwi <- ES99(L_BBBwi)
ES99_BBBwi ES99_BBB
11943875892 9878920788

L_jBBBtailwi <- simulationKernel(pfBBBwi, Z, r, J, K, agg = pfBBBwi$j,
 mk = tail99(L_BBBwi), seed = s)

© Mirai Solutions GmbH

t
i
m
e
(
s
)

Performance benchmark

1 2 4

microbenchmark results (M=1000, K=10)

number of parallel threads

© Mirai Solutions GmbH

3000 6000 1500 375 750

t
i
m
e
(
m
s
)

5000 10000 2500 625 1250

t
i
m
e
(
s
)

Performance benchmark

number of sub-simulations

microbenchmark results (M=1000, K=10)

size of the sub-portfolio

© Mirai Solutions GmbH

Summary

• Monte Carlo simulation of an integrated market and default risk model

• Flexible, consistent, slim, multi-purpose simulation kernel

• TRNG state-of-the-art parallel random number generators

• rTRNG for prototyping in R and broader usage in R/C++ projects

• Flexible and fast ad-hoc assessments on sub-portfolios, simulations of

interest, what-if scenarios

• Incremental simulations and updates possible

• Can also be used for driver or change analysis, isolating away the MC

variability

=> Achieve fast re-simulation instead of

• storing GBs or TBs of granular results

• using complex analytic approximation models that are hard to explain

and understand

