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What is telematics insurance?

Synonyms:  usage-based insurance (UBI)
pay-as-you-drive (PAYD)
pay-how-you-drive (PHYD)

o telematics is the integrated use of telecommunications and informatics;
o black-box device is installed in the vehicle;
e real driving behavior is monitored;

o allows for better risk assessment and personalized premiums based on
individual driving data;

o drives down the cost for low-mileage clients and good drivers;

e may fundamentally change the car insurance industry.
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Traditional rating variables

Self-reported information, including:

@ verceoemais

o age;
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Number of Veniles on this Guole: 1

. y . +Add another vehicle Em
e age driver's license;

venice make

o vehicle year, make and model;

e catalog value;

e engine power; = only proxy variables for the

. accident risk;
e use of the vehicle;

= does not reflect the present

* type of coverage; pattern of driving behavior;

* postal code; = a lot of heterogeneity between

« claims history. drivers remains.
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Additional rating variables due to telematics technology

Telematics data collected in each trip:

¢ the distance driven;

e the time of day;

[P — -4
e how long you have been driving; P -
¢ the location; u

o the speed;
¢ harsh or smooth braking; Possibly combined with:
e aggressive acceleration or e road maps;

deceleration; . .
o weather information;

e your cornering and parking skills. « traffic information.
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Research goals

Goals of our contribution (see Verbelen, Antonio & Claeskens):

(1) set-up data merge, cleaning, quality checks to combine traditional and
telematics rating variables; (all coded in open source R: data.table)

(2) develop the statistical methodology for pricing car insurance policies based
on the high dimensional telematics data collected while driving;

(3) combine traditional rating variables and telematics information in the
claim frequency model;

— compare the performance of different sets of predictor variables
(e.g. traditional vs purely telematics);

— discover the relevance and impact of adding telematics insights;

— contrast the use of time and distance as exposure to risk.
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Telematics data set from a Belgian insurer

e Telematics data collected in between 2010 and 2014.

e Belgian MTPL product with telematics box targeted to young drivers.

e Daily CSV-files with trip info, aggregated on daily basis:

» contract and voucher number;
» start/end time;
» number of trips;

» meters traveled;

— divided by time slot: 6u-9u30, 9u30-16u, 16u-19u, 19u-22u, 22u-6u;

— divided by road type: motorways, urban area, abroad, any other type.
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Combined with policy information and claim counts

Roel Verbelen

Merged with traditional policy(holder) information by policy number and
policy period:

» policy: policy period, material damage cover;
» policyholder: age, experience, sex, bonus-malus, postal code;

» car: age vehicle, kwatt, fuel.

Policy period is restricted to the time period in which telematics data is
being captured.

Technical failure at the turn of the year 2014 taken into account in these
restrictions.

Minimum policy duration of 30 days to be kept in the analysis;

Linked with claim counts of MTPL claims at fault falling in between the
restricted policy durations.

A statistical modeling approach for car insurance pricing with telematics data

9/26



Introduction Data Model

0000 0000e000 00000 ZECS)UOM;OOOO
Description of the data
The resulting data set has 33 259 observations:
e 10406 unique policyholders; e 1481 MTPL claims at fault;
e 17681 years of insured periods; e 297 million kilometers driven;
e 0.0838 claims per insured year; e 0.0499 claims per 10000 km.
What is the best measure of exposure to risk?
0.008 0.08
0.006 0.06
z 2z
g 0004 £ o0s
s} [s]
0.002 0.02
0.000 0.00
Sb 160 léO 260 ZéO 360 3%0 6 lb 2‘0 3‘0 f 50 50 ';0

40
Policy period (days) Distance (1000 km)

Roel Verbelen A statistical modeling approach for car insurance pricing with telematics data 10/26



Introduction Data Model Results
0000 00000800 00000 00000000

Policy information
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Claim count modeling

We model the frequencies of claims by constructing Poisson regression models
(Denuit et al., 2007).

e N;i: number of claims for policyholder i =1,...,/ in policy period
t=1,...,T.

e N ~ Poisson(uit) with

exp(—pie) it
n[t! ’

P(Nit = nit) =
e log linear relationship between the mean and the predictor variables

E(Nit) = pir = exp(nit) -

with n;: is a predictor function of the available explanatory variables.
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Generalized additive models

We use GAMs (Wood, 2006, R: mgcv) to define nonparametric relationships
between the response and predictors

cat cont spatial comp

nie = Bo + offset + 0™ + 0™ + 0™ + nig + 05,
J
= ﬂo + offset + Zitﬂ + Z 6()91t) + fs(latita |Ong[f) + 77:? + Uftomp ’

j=1
o parametric model terms for all categorical predictors;

¢ penalized cubic regression spline components f; for all continuous variables;

e spatial term f; as a smooth bivariate function of the coordinates of the
postal code;

e random effect term and compositional predictors;
« estimation using penalized iteratively reweighted least squares (P-IRLS);

e smoothing parameters selected using AIC.
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Compositional data

¢ Divisions of the total distance driven in the different categories:
road type (4), time slot (5), week/weekend (2)

— highly correlated with and sums up to total distance driven;
— perfect multicollinearity problem;

— standard regression interpretation does not hold.

o We divide the divisions by the total distance since they only contribute
relative information;

— positive components that sum to one;
— compositional data (R: compositions);
— classical statistical techniques incoherent on compositions;

— special vector space structure has to be taken into account.
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Compositional predictors

From a methodological point of view this is the novelty of our work.

e We show how to include the compositional data as predictors in the
regression,

e ...and how to interpret their effect on the average claim frequency;
o We present a solution for structural zeros as predictors;

o As such, we extend both the actuarial pricing literature as well as the
statistical literature on regression with compositional data.
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Model selection and assessment

Roel Verbelen

o AIC is used as a global goodness-of-fit measure.

AIC = -2 -log L+ 2 tr(H)

where H denotes the hat or smoothing matrix.

For each predictor set, variables are selected using an exhaustive search
over all the possible combinations. The best model according to AIC is
retained.

o Predictive performance is assessed using proper scoring rules for count

data (Czado et al., 2009) with 10-fold cross validation
CV(s) = ZZS(P it nie)
ZI 1 -r’ i=1 t=1

where s is a scoring rule and P; ™" is the predictive distribution of the
observed claim count n; estimated with the k;:th part of the data
removed.
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Results: model selection
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Results: model assessment

Predictor set EDF AlC logS Qs SphS

value rank wvalue rank value rank value rank
Classic 32.15 11896 4 0.1790 4 —0.91858 4 —0.95822 4
Time hybrid  39.66 11727 1 0.1764 1 —0.91910 1 —0.95837 1
Meter hybrid 41.47 11736 2 0.1766 2 —0.91908 2 —-0.95836 2
Telematics 18.05 11890 3 0.1787 3 —0.91860 3 —0.95822 3

Roel Verbelen

o Significant impact of the use of telematics data;

e Time hybrid is the best model according to AIC and all proper scoring

rules;

o Using only telematics predictors is even better than the use of traditional

rating variables.
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Data Model Results
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Time hybrid - Telematics information

Predictor

Telematics

Distance

Yearly distance
Average distance
Road type 1111
Road type 0111
Time slot

Week /weekend

Roel Verbelen

Multiplicative
Response Effect

1 20 30 40 50
Yearly distance (1000 km)

Utban- ———
§ Other - |—eo——|
3
S
@& Motorways - —o—

Abroad 4 te—

|I1
Exponentiated clir-transform
with error bounds

Multiplicative
Response Effect
s

o

Urban <

Other~

Motorways <

Road type (without Abroad)

Model
00000

10 20
Average distance (km)

—f—
et

I

0‘9 10 1‘1
Exponentiated clr-transform
with error bounds

Results

00000800

Week-

e

Week / Weekend

Weekend < }—0——1

0'9 10 1'1
Exponentiated clr-transform
with error bounds

hondo-  —e—
9h30-16h | f—0——|
A

16h-19h -

Time slot

—e—

19n-22h -

e

22h6h -

Qlﬂ 0'5 1.0 1'1 1'2
Exponentiated clr-transform
with error bounds

A statistical modeling approach for car insurance pricing with telematics data



Introduction Data Model Results
0000 00000000 00000 00000080

Conclusions

« Statistical methodology developed to incorporate new data structures
provided through telematics in models for claim frequencies.

e Telematics information improves predictive power.

» Gender plays no role anymore in models incorporating telematics
information (cfr. Gender Directive).

» Spatial heterogeneity decreases.

» Time hybrid model incorporating telematics through additional risk factors
is optimal.

» Classic approach performed worse.

o Similar results using negative binomial regression and using exposure as
offset.
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