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Mortality Modelling Context WATT
» Ageing populations are a major challenge for many
countries.
o Fertility rates are declining while life expectancy is
increasing.

» longevity risk: the adverse financial outcome of people
living longer than expected = possibility of outliving their
retirement savings.

¢ long term demographic risk has significant implications for
societies and manifests as a systematic risk for pension
plans and annuity providers.

¢ Policymakers rely on mortality projection to determine
appropriate pension benefits and regulations regarding
retirement.



HERIOT
WATT
£/ UNIVERSITY
World population by level of fertility over time (1950-2010)
On the x-axis you find the cumulative share of the world population. The countries are ordered along the x-axis descending by

|the total fertility rate of the country.
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Data source: United Nations Population Division (2012 revision)
The interactive data visualization is available at OurWorldinData.org. There you find the raw data and more visualizations on this topic. Licensed under CC-BY-SA by the author Max Roser.
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Life Expectancy by Age in England and Wales, 1700-2013

Shown is the total life expectancy given that a person reached a certain age.
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Enhancing mortality models requires an understanding of
common features of mortality behaviour [Cairns, Blake and
Dowd, 2008]
« Mortality rates have fallen dramatically at all ages.
o Rate of decrease in mortality has varied over time and by
age group.
» Absolute decreases have varied by age group.
» Aggregate mortality rates have significant volatility year on
year.
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Stochastic Mortality Models WATT

The uncertainty in future death rates can be divided into two
components:

« Unsystematic mortality risk. Even if the true mortality
rate is known, the number of deaths, will be random.

e larger population = smaller unsystematic mortality risk
(due to pooling of offsetting risks - diversification).

o Systematic mortality risk. This is the undiversifiable
component of mortality risk that affects all individuals in the
same way.

e Forecasts of mortality rates in future years are
uncertain.



Stochastic Mortality Modelling

e [Lee and Carter, 92] proposed a stochastic mortality model
(LC) to forecast the trend of age-specific mortality rates.

e Several extensions to Lee-Carter model have been
proposed, overview in [Fung et al. 2017].
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Stochastic Mortality Modelling EV%I*TT

e [Lee and Carter, 92] proposed a stochastic mortality model
(LC) to forecast the trend of age-specific mortality rates.

« Several extensions to Lee-Carter model have been
proposed, overview in [Fung et al. 2017].

Survival probability is still consistently underestimated
especially in the last few decades ([IMF, 2012]).

This talk considers models aiming to help resolve this issue via

o Stochastic State-Space Mortality Models with Period
and Cohort stochastic latent effects (LCC).

e + Extensions to State-Space Hybrid Regression

Structures!
(see [Fung et al. 2017] and [Fung et al. 2018])
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Stochastic Mortality Modelling SWATT

A state space model has two model components:
« a stochastic observation equation; and
» a stochastic latent Markov state process.
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Stochastic Mortality Modelling WATT

A state space model has two model components:
« a stochastic observation equation; and
» a stochastic latent Markov state process.

Key advantages of state space modelling approach:
« remove awkward identification specifications;
o computational efficiency and numerical robustness;
e accurate in-sample and out-of-sample forecasts;
o optimal statistical efficiency and unbiased estimation;
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Period-Cohort effect state-space formulation
Observation equation: log crude death rates, yx; = In My,
follow:

In fhx,t = ax + Bxkt + B;’Yt—x + €x,t5

where ey ; is a regression noise term.
° = Qyx, 1= |y, - -, O] TEPresents the age-profile of
the log death rates

* B = Bx.x, measures the sensitivity of death rates for
different age group to a change of period effect x;.

o 37 =65, .x, measures the sensitivity of death rates for
different age group to a change of cohort effect ~;_.
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Observation Process: in matrix form.

yX1,t CVX1 6X1 ﬂ;(n O e 0 'YX1 €X1,t
yX.2J _ OZ.XZ n 6.)(2 0 5.12 - 0 7?2 n 5x.2,t
Yxp,t Qx, IBXp 0 o - sz /y;(p ExXp,t
t
Here (kt,7}",...,7,")" is the p+ 1 dimensional latent state

vector. v 1= Yt—x
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Stochastic Mortality Modelling

State Equation in matrix form:

Kt 1 0 O 0
’7;;; 0 A X - >‘p—1
Vi o1 0 --- O
; -0 0 1 -~ 0
7;(;”1 S
’V;(p O 0o o0 --- 1

Period effect x; is a random walk with drift process with
is a stationary AR(p)

 lid

wf ~ N(0,02) and Cohort effect ;"
process with w; ' N(O, o?)

o3
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GOAL: develop stochastic mortality state-space hybrid factor
models.

» Hybrid := Stochastic Latent Factors + Observable
Covariate Features

o observable features extracted from demographic data

e Feature extraction should aim for dimension reduction
= model parsimony.

[Toczydlowska and Peters, 2017] address important aspects of
feature extraction:

@ missing data in time-series and panel (matrix) structured
real demographic data;
® noisy observations and outliers (in real data);
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State-Space Hybrid Factor Models WATT

Two fundamental approaches to develop Hybrid Factor Models:

© time varying factor with static loading coefficient
(classical distributed lag regressions such as ARDL
models);

® static factor with time varying stochastic loading
coefficients.
(state space models e.g. dynamic Nelson-Siegel yield
curves).

o Option 2: suitable for high dimensional data, time series
/ panel structured but represented by relatively “short
time series” lengths.

e = particularly prevalent in demographic studies!

17/45
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Consider the State-Space Hybrid Period-Cohort-Demographic Model
Vi =+ Bipr + e, Et%N(O,UEHp)y
Pr=A@i_1 +O + &, & IEN(O,'Y‘)

where @; = (¢1, 01) isa (p+ pk + 1) x 1 latent process vector of ¢;
stochastic mortality factors (period-cohort) and o; dynamic factor

loadings, with
& — ( O (p11)x1 )
Wokx 1 (p+pk+1)x1
a vector of drift parameters for state equations.
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State-Space Hybrid Factor Models

Consider three models:

Case 1: Factors in
Observation
Equation Only;
Case 2: Factors in
Period Effect State
Equation Only;
Case 3: Factors in
Cohort Effect State
Equation Only.

Bt pX(p+pk+1) = {

( Boxeeny | P )

( BPX(P+1) ‘ °p><pk ) otherwise,

A(p+1>x<p+1)

for Case 1,

0(p+1)><pk > for Case 1,

fT
Opx pk ) for Case 2,

j\(p+pk+1)>< (p+pk+1) = (

Opk x (p+1) Qpk x pk
Api1)x (p+1)

pk X (p+1) ka X pk

Api1)x (p+1)

pk>< (p+1) kaxpk

0y X pk
|~=t for Case 3.
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Probabilistic Feature Extraction SWATT
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« Data Y is observed (or partially observed) over periods
te {1,...,n} and will be reduced to factors F;

Example: d countries demographic data and p denotes the
number of different demographic attributes observed
= then p x d matrix of data in year tis Y;.

* We do not wish to utilise the raw demographic data
Ft 7£ Yt:
in general it will produce a model with too many parameters

e [Toczydlowska and Peters, 2017] considered stochastic
projection methods of dimensionality reduction

= Probabilistic Principal Component Analysis (PPCA)
and Robust extensions.
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PCA by means of Factor Analysis: with n realisations of the
(p x d)-dimensional observed demographic data, vectorized
into columns Y.

Consider linear decompositions:

T
Yn><pd = XnXdepdxpd + €nxpd-

Factor analysis assumes diagonal covariance for €;.

Stochastic Factor PCA: differs from deterministic PCA as
components X; and factor loading matrix W account for
correlation between elements of y; and only part of the
variation:

Ey/y:=E [(xtWT + et) ! <xtWT + e,)} =WAW + o,

In standard PCA x; and W account for the entire
covariance.
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Probabilistic Feature Extraction

Show x; and W account for correlation!

Example: assume x; ~ N (0,14) and ¢; ~ N (0, ¥) to obtain,
yt|xt7 W, U~ N (XtWT, \I’) ,

_d 1.
TYIW, #) = [ n(ye xdW, ®)oixe = (2m) €] " exp (- 5yCy])

for C = WW' + & where |C| denotes the determinant of the
matrix.

¢ Notice that since W is diagonal, the correlation structure
between components y; is specified by the matrix W.

23/45



RIOT

Probabilistic Feature Extraction WATT

£/ UNIVERSITY

Show x; and W account for correlation cont.

Eigen decomposition of covariance C = UgygLgxqU’, for
diagonal L and orthonormal U, gives

—(C-LU= (WW+o2lg—L) U= (WW — (L- %)) U.

* Thus, the matrix A = (L — 02I4) and U are matrices of
eigenvalues and corresponding eigenvectors of WW .

 Since \; = [; — 02 > 0, the scalar o2 can be chosen as the
smallest diagonal element of A.

e Factor loadings are given by UA:.

Assuming the error term ¢; is homogeneous s.t. ¥ = o2,
then estimating W via PCA given C = WW' + 521, is
identifiable.
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Feature Extraction via EM Algorithm Estimation!

Goal is to estimate:
¢ projection matrix W,
e vector o and
« scalar o?
given marginal distribution of Y;

YoV ~ N (u,wa + UZ]Id)

for the vector of static parameters W = [W, u, 2] of the model.

The EM algorithm uses logarithm of the the complete data
likelihood, i.e. the joint distribution of Y.y, X1.n|W given by

N
Ty Xy (VTN X1N) HWYHX, (¥e) mx,jw (xe)

N N
em M () Mo [ LS (W) (v T) T Sl
77 =1 =1
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Feature Extraction via EM Algorithm Estimation!

1. Expectation step: Expectation of the loglikelihood function of
the join distribution of Yy.n, X1.n|W for a fixed
vector of static parameters W* with respect to the
conditional distribution X1.n|Y1.n, W

Q(V, V") = Ex, \|Y,n,v ['09 Ty, p Xenl 0 (V1N X1:N)}

2. Maximisation step: Finding W*, u* and o*2 that maximize
Q(V|v)

(W*, w 0*2) = argmax Q (v, v¥)
W*E]Rka,p,* ERd,U*2>O
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Theorem

The E-step of the EM algorithm for Gaussian Probabilistic Principal
Component Analysis given N realisations of the observation vector Y;
denoted by y1.n = {Y1,...,Yn} is obtained in the closed form as
follows

Q(V, V™) = Ex, |V, 0,v ['09 Y, Xew W= (Y1:N5 X1:N)]

N(d + k Nd 1L (1
= 7%Iogz = —Iog ~3 { Tr{y{y:}
t=1
— Vi = e T T— 2 Tf{W EXAY,,W[XrT]Vt}

2 1
+ ﬁExt\Yh\l’ [Xt] W*TN*T + Tr{ <FW* TW* + HK>EX1|Y1,\U [XZX{} }

v

see details of expectations and proof in [Toczydlowska and
Peters, 2017].
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Theorem
The maximizers of the function Q (V, V*) are given by
' = Ay W) (o — WM-TWT) 4 W
* ~ * —1 2pp—1 —1 TA —1 =i
W* = Cpu e (Yo W, W)WM (a M+ M WG, (yin; W)WM )
o = 18 Tr{ém(yt,\,; W, U) —2WM'W'C,, - (Y1ov; W, W)
+ W (02M“ +M WG (yi; \IJ)WM_1) w*T}

see details of components and proof in [Toczydlowska and
Peters, 2017].
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Probabilistic PCA with Missing Data:
Until now, we assumed the data did not contain any missing
observations!

» Real demographic time series data have numerous types
of missingness.

e = missingness is an important aspect to address in the
feature extraction!

[Toczydlowska and Peters, (2017), (2018)] address different
components of PPCA in missing data estimation settings via
robust versions of Expectation-Maximisation.

¢ Distributional Extensions: Student-t, Skewed and
Grouped Student-t cases.
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Feature Extraction via EM Algorithm with MISSING DATA!

Define the indicator random variable R; which decides which
entries of Y; are missing denoting them by 1, otherwise 0.

» Each observation consists of the pair [Y{, R;] with
distribution parameterized according to parameters [V, ©]
respectively.

Likelihood is given by conditional probability Y¢, R;{|V, ©:
mve R, (Y7 Ft) = /Wv;’,vgn,a,w,@ (yf yire) dyf”

= /Wn,w,,\u,e (ro) Ty w0 (Yt) AY{

We assume for simplicity a pattern of missing data according to
MAR - missing at random
» The assumptions imposes the indicator variable R; to be
independent of of the value of missing data.
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Then the vector Y; which is MAR satisfies

TRy, w(rt) = TR vo w(rt)
resulting in
mve ryw.0 (¥7) = TRve.0 (ft)/ﬁmw (y:) dyf’
= TRyve,0 (Ft) Tyepw (V7) -
= Under the MAR assumption, the estimation of ¥ via
maximum likelihood of the joint distribution Y?, R|W, © is

equivalent to the maximisation of the likelihood of the marginal
distribution Y¢|W.
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Demographic data that we extract “Observable” covariate
regression Features from:

¢ Data from Human Mortality Database
(http://www.mortality.org).

 We use four different data sets:

o Birth counts;
» Death counts;
o Life tables: Life Expectancy at Birth and Death Rates.

e The time series vary in terms of data structure, the
number of available observations and the missingness
attributes of the records.
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TYPES OF DATA:
« One dimensional time series data per country per

gender
(31 countries, M and F, gives 124 time series):

e Birth counts and
 Life expectancy at Birth.

o Multivariate cross sectional time series data per
country & gender: age specific data for Death counts and
Death Rates.

¢ A single observation per country in time t describes:

e number of deaths of people with ages from 0 to 110+
(Death counts) or;

e number of deaths for ages from 0 to 110+ scaled to the size
of that population, per unit of time (Death Rates).
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Model estimation performed by Forward-Backward Kalman Filter
within Rao-Blackwellised Adaptive Gibbs Sampler (MCMC).
The state space models we considered in our studies were of
type:
@ [LCC:] Lee-Carter model with the stochastic period + cohort
effect.

® [DFM-PC:] demographic factor model versions of Lee-Carter
(Period-Cohort).

The factors are obtained by performing Probabilistic Principle
Component Analaysis PPCA jointly on the set of data for all
countries listed, excluding:

United Kingdom (response variable)
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Figure: In sample analysis residuals (left Female, right Male).
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Figure: In sample analysis residuals (left Female, right Male).
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¢ [DFM-PC-B:] the mean of first principal component of Birth
counts as a static parameter, age specific element of g;

» [DFM-PC-D-r/s:] the first principal component of Death
counts ( which is age and country specific) as an
exogenous factor, one element of g; corresponds to a
country specific subvector of the component.;

» [DFM-PC-Mx-r/s:] the first principal component of Death
Rates ( which is age and country specific) as an
exogenous factor, one element of g; corresponds to a
country specific subvector of the component.

r/s - is robust vs standard
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e Out-of-Sample Study: Model calibration period is 1922 — 2002
= forecast performance analysis for 2003 — 2013

Model MSE DIC MSEPycve MSEPkaman
LCC 0.0097 -3627 0.1778 0.1774
DFM-PC-B 0.0072 -6500 0.0057 0.0062
DFM-PC-D-r 0.0182 -6380 0.0177 0.0251
DFM-PC-D-s  0.0065 -5996 0.0185 0.0156
DFM-PC-Mx-r  0.0081 -8225 0.0111 0.0129
DFM-PC-Mx-s 0.0174 -3951 0.0692 0.0285

e The results confirm that adding demographic features, as
additional explanatory variables to the LCC model,
improves both in-sample fit out-of-sample fit and therefore
the predictability of log death rates.
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Figure: 10-year out-of-sample forecasted log death (y axis) rates by
age with corresponding prediction intervals.
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Figure: 10-year out-of-sample forecasted log death (y axis) rates by
age with corresponding prediction intervals.
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Figure: 10-year out-of-sample forecasted log death (y axis) rates by
age with corresponding prediction intervals.

42/45



HERIOT

Conclusions @IWATT

UNIVERSITY

e We explored how to construct a state space formulation of the
stochastic mortality models for Period and Cohort factors

e We explored how to extend to Hybrid Multi-Factor Stochastic
State-Space Mortality models with Period-Cohort factors as well as
demographic regressors.

e We briefly learnt about feature/covariate extraction methods to extract
the demographic factors used in the extended HMF Stochastic
State-Space Mortality models.

e Standard Lee-Carter Period-Cohort model consistently under estimates
forecast log-death rates

e Extended models proposed improve significantly the forecast
performance of log-death rates.
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