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Some benefits of Bayesian approach

» Make rational decisions under
uncertainty

» Express your beliefs about
parameters and the data generating
process

» Properly account for uncertainty at
the individual and group level

» Do not collapse grouping variables

» Small data is fine if you have a strong
model




Learning. To act.




Communicating with stakeholders

» Before model model building

» During model building
20
G

» After the model had been fit
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Enter the Bayesian loop
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Motivation for using prior information

» From LJ Savage (1961)

1. A lady, who adds milk to her tea, claims to be able to tell whether the
tea or the milk was poured into the cup first. In all of ten trials conducted
to test this, she correctly determines which was poured first.

2. A music expert claims to be able to distinguish a page of Haydn score
from a page of Mozart score. In ten trials conducted to test this, he
makes a correct determination each time.

3. A drunken friend says he can predict the outcome of a flip of a fair coin.
In ten trials conducted to test this, he is correct each time.



Bayesian expected loss

p(,0) = Ey(L(6.0)) = [ L(0.0)x(0l)d0 §

9 » Unknown parameter vector, state of the world

Uy » Observed data, say outcome of an experiment

a » Action to be taken (decision d(y), s.t. if Y =y, do a)
L(6,a

) » Is the loss function
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Simple decision problem

» You observe the following sequence of

of draws from a Bernoulli process: wnN N n BETQ

T,H,H, T, H ’ x‘},

» If the process is biased towards Heads,
you get $100

» If it is biased towards Tails, you loose
$100

» It cost o to play th THANKS FOR THE FHEE MIINEY
costs $30 to play the game SUCKER™*" %

» Are you in?



Bayesian machinery

» The joint probability of data y and unknown parameter theta:

p(y,0) = p(y|0) * p(0)
p(y,0) = p(0ly) * p(y)

» The conditional probability of theta given y:
Likelihood Prior

p(yl0) p(0) _ pyld) xp®) _ p(ylf) = p(0)
p(y) J p(y,0)d0 [ p(y|6) = p(6)do

Marginal Likelihood
x p(y|6) * p(0)

p(0ly) =




Bernoulli Model

» If we model each occurrence as independent, the
joint model can be written as:

Bernoulli Likelihood P(¥|6)
N /\
= T 0% + (1 —0) 79 = gZnm1n s (1 — g)2nma (17w
n=1
» What happened to the prior, p(6)
» On the log scale:

N
log(p Zyn*log Zl—yn x log(1 — 0)
n=1

data <- 1ist(N
y

3,
co, 1, 1, 0, 1))

# log probability function
lp <- function(theta, data) {
lp <- 0
for (i in 1l:data$N) {
lp <- 1p + log(theta) * data$y[i] +
log(1l - theta) * (1 - data$y[i])
ks
return(lp)



Bernoulli Model

# generate the parameter grid
theta <- seq(0.001, 0.999,
length.out = 250)

# log p(theta | y)

log_likelihood <- 1p(theta = theta, data)
log_prior <- log(dbeta(theta, 1, 1))
log_posterior <- log_likelihood + log_prior
posterior <- exp(log_posterior)

# normalize
posterior <- posterior / sum(posterior)

# sample from the posterior

post_draws <- sample(theta, size = 1le5,
replace = TRUE,
prob = posterior)

post_dens <- density(post_draws)

mle <- sum(data$y) / data$N

> mle

[1] 0.6

# conjugate prior / posterior
theta_conj <- dbeta(theta, 1 + 3, 1 +5 - 3)
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Same Model in Stan

data {
int<lower=1>
int<lower=0, up

b

parameters {
real theta;

I

model {
FeE@a rn N

EARGeE =

(1 - y[n]) * 1og(1 - theta);

log(p :E:th*log

data {
int<lower=1> N;
int<lower=0, upper=1> y[N];
ks
parameters {
real<lower=0,
ks
model {
y ~ bernoulli(theta);

}

upper=1> theta;

N
j{: 1 —y,) xlog(1l —0)
n=1



Decision problem answer?

» If the coin is biased towards heads
you get $100

» If not, you loose $100

» It costs $30 to play the game

> (p_heads_bias <- mean(post_draws > 0.5))
[1] 0.656346

> 1integrate(dbeta,

+ lower = 0.5, upper = 1,

+ shapel = 4, shape2 = 3)
0.65625 with absolute error < 7.3e-15
> (p_tails_bias <- 1 - p_heads_bias)
[1] 0.343654

> p_heads_bias * 100 +

+ p_tails_bias * (-100) - 30

[1] 1.27
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Changing the prior?

» You were told that the same
machine was observed producing a
sequence with 10 heads and 10 tails

» Would you still like to play the
game?

p_heads_bias <- integrate(dbeta,
lower = 0.5, upper = 1,
shapel = 14, shape?2 = 13)$%$value
(p_tails_bias <- 1 - p_heads_bias)
[1] 0.42
> p_heads_bias * 100 +
+ p_tails_bias * (-100) - 30
[1] -14.50

>
+
+
>

dbeta(x, 4, 3)

dbeta(x, 14, 13)




Expected payoffs are not utilities. Paradox?

» A wealthy individual offers you the following bet:

» You {flip a fair coin until you see Heads. For each round you
will get 2° dollars. How much are you willing to pay to play
this game? If X is the total winnings:

1 1

1
E(X):5*21+Z*22+§*23—|—...:1—|—1—|—1—|—...=oo

» Number of rounds N is the First Success distribution
N ~ F§5(1/2)

E(N)=-=2

1
p






Decision problem

» A publisher has thousands of books in the
catalog

» Every year, hundreds of new books (products)
are published

» There are also new authors, repeat authors,
genres, seasonality, and so on

» Publisher wants to maximize revenue,
but not if it results in more than 10% loss
in quantity sold







Basic model for guantity sold

00000

qty = f(price, price*, product_age, ...)

00000

» For a Gaussian model, and one product:

qty; ~ N(X;8,0%)

Simulated Quantity Sold
o ™
8

» For products that sell thousands of units we

would fit a log-log model "’ :
» For lowgr volume products that sometimes sell | _; o __ i+ datasi n(N_prod = 1,
zero units, we fit a count model that does not global_intercept = 8.5,
force the mean to be equal to the variance theta = 10,
gty_process = "negbinom",
qty ~ Negatwean()mzal(,u, q§) primary_price_process = "none",
= exp(a + B1 * product_age + By * price + ...) Linkiny = exp)

of = p+p?/o



Simulating Data

if (process == "normal") {
data <- data %>%
mutate(qty = linkinv(product_intercept + product_beta_time * days + product_beta_price * price +

error_sd * rnorm(sum(n)))) %>%
mutate(qty = ifelse(qty <= 0, @, round(qty)))
} else { # negative binomial
data <- data %>%
mutate(mu = linkinv(product_intercept + product_beta_time * day + product_beta_price * price)
gty = MASS::rnegbin(n = sum(n), mu = mu, theta = theta))
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Baseline stan model for a single product

data {
int<lower=0> N;
int<lower=0> y[N];
vector[N] t;

¥

parameters {
real alpha; // overall mean
real beta; // time beta

real<lower=0> phi; // dispersion
3
model {

vector[N] eta;

// linear predictor

eta = alpha + t * beta;

// priors

alpha ~ normal(@, 10);

phi ~ cauchy(@, 2.5);

beta ~ normal(@, 1);

// likelihood

y ~ neg_binomial_2_log(eta, phi);

simd2_m2 <- stan('m2_self_stan_nbinom.stan'

data = 1ist(N = nrow(simd2$data),
y = simd2$datasqty,
t = simd2$data$day),

control = list(stepsize = 0.01,
adapt_delta = 0.99),

cores = 4,

iter = 400)

# truth: alpha = 8.5, beta = -0.10, phi = 10
samples <- rstan::extract(simd2_mZ2,
pars = c('alpha',
'beta’,
"phi'))

> lapply(samples, quantile)
$alpha
0% 25% 50% 75% 100%
8.3 8.4 8.5 8.6 8.8

$beta
0% 25% 50% 75% 100%
-0.107 -0.102 -0.100 -0.099 -0.092

$phi
@% 25% 50% 75% 100%
6.2 10.1 11.5 13.0 24.1



Multiple products, authors, genres
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Hierarchical pooling in one slide

Average sales across all books
Average sales for book |

Number of observations for book j

, 2 Y9 T T2 Yall
&multzlevel o %y Oa
* Y

J ng 4 1

2 | 2
O'y O'a

Indexes books
Estimate of average sales for book | Within-book variance

Variance among average sales of different books



Fitting multilevel models in rstanarm

“Fixed Effects’ install.packages(“rstanarm”)

\

fit <- stan_glmer.nb(qty ~ product_age + price + price_sqr +
(1 + product_age + price + price_sqr | product),

algorithm = "sampling",
seed = 123, Random Seed
cores = 4,
iter - 600,
Varying data = data) 1 Core per
Intercepts Chain
Varying Number of
Slopes A lterations per
Fit using Chain

MCMC



Demand elasticity vs revenue
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Calibration Checks

> check_calib(d) : B

in_90  1in_50 o
1 0.9573893 0.7125305 \ 0| I
> check_calib(d, TRUE) I fi f
Source: local data frame [203 x 3] ||Il/f| ] I

e TGRS | Wi |

1 0.9333333 0.7166667 2 N:
2 0.9500000 0.8333333 & : : 0
3 0.9833333 0.8500000 :
4 0.9666667 0.6500000

5 0.9666667 0.7000000

6 0.9833333 0.8833333

7 0.9666667 0.6833333

8 1.0000000 0.7666667 H*@

9 0.8833333 0.6166667 Tt

10 0.9500000 0.8500000 Scaled Product Age |



Revenue Optimization Scenarios
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Revenue Optimization Scenarios (Qty)
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Socializing your models

C(S;, 1) =SN(d)—K e "TIN(d»)

where, 1 x >
N(x)—ﬁ _ooe_2dy
4 log(%)+(r+%)(T—t)
ovT —t
4y = 192+ (= F)(T -1
ovT —t

K : Option exercise price at maturity




Price optimization dashboard Portfolio view Product-level price explorer Constrained optimizer
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Sales share analysis

Change in sales share
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Decision Analysis References

» Introductory

» Understanding Uncertainty, Dennis Lindley, 2006, Chapter 10: Decision
Analysis

» Some Class-Participation Demonstration for Decision Theory and Bayesian
Statistics, Andrew Gelman

» Classical (with Bayesian Flavor)

» Statistical Decision Theory and Bayesian Analysis, James Berger, 1985
» Gelmanese

» Bayesian Data Analysis, Gelman et. al, Chapter 22: Decision Analysis

» Analysis of Local Decisions Using Hierarchical Modeling, Applied to Home
Radon Measurement and Remediation, Lin et al., 1999, Statistical Science



Thank Youl!

» eric@generable.com

» @ericnovik

» www.linkedin.com/in/enovik




