Mortality Forecasting Using Stacked Regression Ensembles

Salvatory Roman Kessy Joint Work With: M. Sherris, A. Villegas, & J. Ziveyi.

UNIVERSITY OF NEW SOUTH WALES

Insurance Data Science Conference: 16 June 2021

Model Selection Dilemma

Figure 1: Model Selection Dilemma.

▶ What mortality model is likely to perform best?

Different Mortality Models

Multiple mortality models capture different features of death rates such as trends, linearity, non-linearity, curvature, and cohort effects.

Model	Predictor (η_{xt})	Parameters
1.6	$\alpha_{\star} + \beta_{\star}^{(1)} \kappa_{\star}^{(1)}$	0 .
LC		$2n_a + n_y$
RH	$\alpha_x + \beta_x^{(1)} \kappa_t^{(1)} + \beta_x^{(0)} \gamma_c$	$3n_a + n_y + n_b$
APC	$\alpha_x + \kappa_t^{(1)} + \gamma_c$	$n_a + n_y + n_b$
CBD	$\kappa_t^{(1)} + (\mathbf{x} - \bar{\mathbf{x}})\kappa_t^{(2)}$	$2n_y$
M7	$\kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)} + ((x - \bar{x})^2 - \hat{\sigma}_x^2)\kappa_t^{(3)} + \gamma_c$	$3n_y + n_b$
Plat	$\alpha_x + \kappa_t^{(1)} + (\bar{x} - x)\kappa_t^{(2)} + (\bar{x} - x)^+\kappa_t^{(3)} + \gamma_c$	$n_a + 3n_y + n_b$

Table 1: Generalized Age-Period-Cohort (GAPC) mortality models. Here, year of birth is c=t-x, n_a is a number of ages and n_y is a number of years. The functions $\beta_x^{(i)}, \alpha_x, \kappa_t^{(i)}$, and γ_c are age, period and cohort effects respectively with \bar{x} being the mean age over the range of ages being used in the analysis, $\hat{\sigma}_x^2$ is the mean value of $(x-\bar{x})^2$.

Better methods are needed.

Model Combination

➤ Simple Model Averaging (Shang 2012), Bayesian Model Averaging (Kontis et al. 2017), Model Confidence Set (Shang and Haberman 2018).

Model combination formulation:

$$\ln\left(\widehat{\mu}(x,t+h)\right)_{\text{comb}} = \sum_{m=1}^{M} \mathbf{w}_{m} \ln\left(\widehat{\mu}_{m}(x,t+h)\right).$$

Stacking Ensemble Techniques

- Stacking ensemble combines point predictions from multiple models using the weights that optimise a cross-validation criterion (Wolpert 1992).
- ► The stacking ensemble has been successfully applied and improved the predictive accuracy on a wide range of problems:
 - 1. Forecasting global energy consumption (Khairalla et al. 2018).
 - 2. Credit risk assessment (Doumpos and Zopounidis 2007).
 - 3. Financial time series data sets (Ma and Dai 2016).
- Most winning teams in data science competitions have been using the stacked regression ensemble (Sill et al. 2009; Puurula, Read, and Bifet 2014; Makridakis, Spiliotis, and Assimakopoulos 2019).

This Presentation is About ...

- Propose a new approach of estimating the optimal weights for combining multiple mortality models using stacked regression ensemble framework (Wolpert 1992).
 - 1. Concurrently solve the problem of **model selection and estimation of the model combination** to improve model predictions (Sridhar, Seagrave, and Bartlett 1996).
 - 2. Tackle the **model list miss-specification limitation** associated with the BMA approach (Yao et al. 2017).
 - 3. Assigns weights to the individual mortality models by minimising the cross-validation criterion.
- Develops the mortality model combination that is dependent on the forecasting horizon (SriDaran et al. 2021; Rabbi and Mazzuco 2018).

Stacked Regression Ensemble

Figure 2: Stacked regression ensemble framework when forecasting three-year ahead mortality rates. The framework can be generalized for predicting mortality rates in any forecast horizon by varying the width of the testing data in red.

Meta-learners

Non-negative Least Square Regression (Breiman 2004; Naimi and Balzer 2018):

$$\widehat{\mathbf{w}}^*(h) = \underset{\mathbf{w}(h)}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i^h - \sum_{m=1}^{M} w_m(h) z_{im}^h \right)^2, \ \widehat{w}_m^*(h) \ge 0.$$

Ridge Regression (Leblanc et al. 2016):

$$\widehat{\mathbf{w}}^*(h) = \underset{\mathbf{w}(h)}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i^h - \sum_{m=1}^{M} w_m(h) z_{im}^h \right)^2 + \lambda \sum_{m=1}^{M} w_m^2(h).$$

Lasso Regression (Gunes, Wolfinger, and Tan 2017):

$$\widehat{\mathbf{w}}^*(h) = \underset{\mathbf{w}(h)}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i^h - \sum_{m=1}^{M} w_m(h) z_{im}^h \right)^2 + \lambda \sum_{m=1}^{M} |w_m(h)|.$$

Combination Weights for Mortality Models

- ▶ Human Mortality Database: England and Wales, Males and Females.
- ▶ Training set: 1960 to 1990, Test set: 1991 to 2015, and ages 50 89.

Figure 3: Horizon-specific optimal combining weights learned using different meta-learners for England and Wales males mortality data from 1960 to 1990 and ages 50 to 89.

Performance of Stacked Regression Ensemble

Figure 4: MSEs of the one-step-ahead to 15-step-ahead mortality rate forecasts using different mortality methods and forecast horizons for England and Wales male and female mortality data.

Stacked Regression Ensemble in Different Countries

Figure 5: Heat maps showing the average ranks of mortality models across different countries for males and females.

Conclusion

- Using 44 populations from the Human Mortality Database, stacking mortality models increases predictive accuracy.
- ▶ Stacked regression (SR) achieved an average accuracy of 13% 49% and 20% 90% over the individual mortality models for males and females.
- SR also achieved better predictive accuracy than other model combination methods.
- ► The weights for combining the individual mortality models vary depending on the meta-learner, forecasting horizon, country, and gender.
- Estimating weights or choosing the individual mortality models via cross-validation proves to be a crucial step.
- Our results confirm the superiority of SR over the individual and other model combination methods in forecasting the mortality rates.

1. Install the CoMoMo package

2. Download the mortality data

3. Define the mortality models

4. Generate the metadata

5. Compute the weights

```
stack_nnls_weight <- stack(metaData, metalearner = "nnls")
plot(stack_nnls_weight)</pre>
```


Bayesian Model Averaging (BMA)

Model Confidence Set (MCS)

6. Fit the mortality models

7. Combine the fitted mortality models and combination weights.

```
modcomb <- CoMoMo(modelFits, weight = stack_nnls_weight)</pre>
```

8. Forecast the mortality rates

```
mortalityForecast <- forecast(modcomb, h = 15)</pre>
## # A tibble: 600 x 5
##
     ages year
                   h model
                              rate
##
    <int> <dbl> <dbl> <chr>
                             <dbl>
           1991
## 1
       50
                   1 comb 0.00483
## 2
       50
          1992
                   2 comb 0.00484
## 3
       50
          1993
                   3 comb 0.00484
## 4
       50
          1994
                   4 comb 0.00483
## 5
       50
          1995
                   5 comb 0.00485
## 6
       50
           1996
                   6 comb 0.00483
## # ... with 594 more rows
```

Scan to Acess Our Working Paper

References

Breiman, Leo. 2004. "Stacked Regressions." *Machine Learning* 24 (1): 49-64. https://doi.org/10.1007/bf00117832.

Doumpos, Michael, and Constantin Zopounidis. 2007. "Model Combination for Credit Risk Assessment: A Stacked Generalization Approach." *Annals of Operations Research* 151 (1): 289–306. https://doi.org/10.1007/s10479-006-0120-x.

Gunes, Funda, Russ Wolfinger, and Pei-Yi Tan. 2017. "Stacked Ensemble Models for Improved Prediction Accuracy." Sas, 1–19.

Khairalla, Mergani A, Xu Ning, Nashat T AL-Jallad, and Musaab O El-Faroug. 2018. "Short-Term Forecasting for Energy Consumption Through Stacking Heterogeneous Ensemble Learning Model." *Energies* 11 (6). https://doi.org/10.3390/en11061605.

Kontis, Vasilis, James E. Bennett, Colin D. Mathers, Guangquan Li, Kyle Foreman, and Majid Ezzati. 2017. "Future Life Expectancy in 35 Industrialised Countries: Projections with a Bayesian Model Ensemble." *The Lancet* 389 (10076): 1323–35. https://doi.org/10.1016/S0140-6736(16)32381-9.

Leblanc, Michael, Robert Tibshirani, Michael Leblanc, and Robert