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Global Financial Crisis 2008

o The 2008 financial crisis has been described as a
generalised and coordinated event of credit-default,
resulting from the combined effect of two separate shocks:

o A shock of increasindg uncertainty about the valuations and
disclusers of structured products, and

o A shock of increasing deterioration in the credit ratings
of the tranches of funding structures and securitisations.

o During the crisis episode, credit rating agencies were
compelled to make abrupt and massive downgrading.

o Thus creating confusion among investors, who tended to
assume that the credit standing of structured products was as
stable as traditional fixed-income instruments.

o Criticism of structured finance has revolved around its
potential to cause massive credit delinquency.



Global Financial Crisis 2008

O

Credit rating models strongly dependent on QUALITATIVE
assessment.

Data Science can be used to improve/correct expert
qualitative assessment.




Credit-Default Obligations

o Constant proportion debt obligations (CPDO) and
collateralised default obligations (CDO) are credit
structures guaranteeing a (relatively high) level of portfolio
returns at the end of a given investment horizon.

m Payments are expressed as cash flows referring to some portfolio of
relatively highly profitable/risky assets (typically, a credit default
swaps index, CDX?.

m Proceeds are maintained in a cash deposit, as collateral for the long
assets position.

o Leverage is dynamically adjusted in order to ensure that
the value of assets minus liabilities is always positive.

m Leverage is increased in the event of incurring in portfolio losses.

o Default occurs when leverage reaches the maximum
level determined at inception.



Debt structuring process
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Mortgage Market Flows
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Data requirements
T

o Data required by credit rating agencies before inception:

o Loan-level data o Historical data - portfolio
requirements: evolution by cohorts:

m Credit standing of borrowers
and originators.

m Type and level of currency.

m Original and current
outstanding balances.

m Loan-to-value ratios.

m Appraisal value of collateral
(properties).

m T¥pe (fixed/floating) and level
of interest rates.

m Original and remaining term to
maturity.

Historical yields & balances.
Historical prepayment rates.
Portfolio delinquencies.
Portfolio defaults.

Portfolio recoveries.



Data requirements
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O

o The provision of data is one of the most
0 challenging aspects of debt structuring.

o It brings on the need of developing &
u maintaining a complex IT platform.

o Such infrastructure can be used by SPVs
for the management of structured debt

" until maturity.

o It can be used, in particular, for the
implementation of a neural network
- reviewing/imProving the model
estimations of PD rates & credit
ratings.




Model specification
T

o Option-based framework

o Traditional statistical (geometric Brownian
methodologies: motion).
ds,

=(rt +p,)° dt+o- dW

o Linear discriminant
analysis (LDA). ’

. e . , . risk premium
o Logistic regression P b

(LOGIT). o Default occurs when the level
o Univariate & multivariate of portfolio losses surpasses
models. a given threshold L*.
aP? 0. 9PD o 9PD _ IPD
o Other: JL do ar Jp
= DECISIO-I‘] trees. o Two main categories:
Operational research. = Exogenous default-trigger

O
: (L*).

o Evolutionary approaches. m Endogenous default-trigger

O

Fuzzy logic. (L*).



Neural network framework
o

o  Input layer: o Reinforced learning:

o Reinforced learning trains the

o Input neurons receive and € i |
network by introducing prizes

process the incoming stimuli as
stipulated by some transfer
function.

Results are thus transferred to
the neurons in the middle
layers.

Middle layers:

o Results produced in the middle

layers are adjusted by weights
representing the connections
between consecutive neurons.

Every neuron is described by a
transition function and a
threshold.

m The threshold is the minimum

value that activates the receiver
neuron.

and penalties as a function of
the network response.

m Prices and penalties are used to
modify the weights.

Reinforced learning is applied to
train adaptive systems that
perform tasks composed of a
sequence of actions.

m The final outcome is the result of
the sequence of actions.

m The contribution of every single
action is thus evaluated
depending on the impact on the
resulting action chain.



Multi-layer perceptron network
| 10

Input Layer .L Hidden Layer Output Layer
~4

Figure 3. Perceptron network.

Source: Pacelli, V. & Azzollini, M. (2011).




Multi-layer perceptron network

o Back Propagation o Output.
learning algorithm.

o Internal credit score

o The network learns by means categories.
of a series of attempts to
estimate the weights linking = SAFE:

the input to the output

results - through a series of = VULNERABLE;

hidden layers of neurons. = RISK,

m Starts with random weights o Credit score categories as
affecting the neurons in the defined by the different credit
input layer. rating agencies,

m Weights in the intermediate
and output layers are

progressive|y adjusted. | Standard & POOI"S (S&P),
= MOODY’s;
= At every iterative step, the = FITCH Group.

error between the network
result and the desired/
observed output is minimised.



Network output
24

Table 1. Neural network’s results.

Rating Safe Vulnerable Risk
Safe 84.2% 15.8% 0%

Vulnerable 23.1% 73.9% 3.0%

Risk 15.2% 50.0% 34.8%

Source: Pacelli, V. & Azzollini, M. (2011).



Network output
TR

EXHIBIT 3.3 Portfolio defaults, historic basis

Percentage »
Defaulted 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2006/Q4  0.00% 0.00% 0.00% 0.10% 0.25% 0.68% 1.61% 3.06% 4.98% S5.48% 6.46% 7.94% 8.94% 9.20% 9.50% 9.80% 10.00% 10.10%
2007/Q1  0.00% 0.00% 0.00% 0.06% 0.24% 0.83% 1.83% 3.25% 3.87% 4.97% 6.50% 8.57% 8.85% 9.40% 9.70% 10.20% 10.40%

2007/Q2  0.00% 0.00% 0.00% 0.04% 0.32% 0.90% 2.00% 2.45% 3.32% 4.60% 5.30% 6.69% 7.70% 8.60% 9.38% 9.70%
2007/Q3  0.00% 0.00% 0.00% 0.07% 0.46% 125% 1.73% 2.66% 4.09% 5.99% 6.49% 7.34% 8.51% 10.01% 10.26%
2007/Q4  0.00% 0.00% 0.00% 0.11% 0.51% 0.99% 2.00% 3.62% 5.79% 6.31% 7.18% 8.45% 10.04% 10.38%
2008/Q1  0.00% 0.00% 0.00% 0.09% 0.51% 1.44% 2.93% 4.00% 5.62% 6.66% 8.16% 9.10% 9.70%

2008/Q2  0.00% 0.00% 0.00% 0.06% 0.53% 1.58% 3.27% 3.98% 5.25% 7.01% 8.30% 9.00%

2008/Q3  0.00% 0.00% 0.00% 0.14% 1.00% 3.70% 5.50% 7.00% 8.70% 9.70% 10.50%

2008/Q4  0.00% 0.00% 0.00% 0.10% 1.20% 3.50% 5.00% 7.30% 8.40% 9.20%

2009/Q1  0.00% 0.00% 0.00% 0.13% 0.90% 1.76% 3.00% 5.20% 6.40%

2009/Q2  0.00% 0.00% 0.00% 0.11% 0.67% 1.86% 3.20% 4.69%

2009/Q3  0.00% 0.00% 0.01% 0.12% 0.83% 1.50% 3.25%

2009/Q4  0.00% 0.00% 0.00% 0.14% 0.75% 1.63%

2010/Q1  0.00% 0.00% 0.00% 0.06% 0.58%

2010/Q2  0.00% 0.00% 0.00% 0.08%

2010/Q3  0.00% 0.00% 0.00%

2010/Q4  0.00% 0.00%

2011/Q1  0.00%

Source:Baig & Choudhry (2013).



Conclusions

o Data science provides a theoretical framework for the
management of credit-default structures.

o Estimations of the default probabilities of the
underlying loans can be periodically reassessed -
thus reflecting changes in:

m Portfolio management decisions — buying and selling orders
of loans;

m Model & parameter misspecification;
m Market conditions.

o Eventually, the implementation of neural networks
leads to the automation and progressive improvement
of expert knowledge - qualitative assessment.
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