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Good mortality models are needed in many applications.

Accurate mortality forecasts

are important for pension systems, insurance companies, governments, . . .

are not always achieved by classical methods,

should give an impression of the possible distribution of future mortality rates.

We propose a convolutional neural network (CNN) for mortality forecasting along with a reliable method for quantifying its
prediction uncertainty.
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CNNs capture two-dimensional structure in mortality rates.

We propose to use a bootstrap ensemble of
two-dimensional CNNs for forecasting
death rates.

A similar approach has been successfully
investigated by Perla et al. [2021].

Figure: Heat map displaying the death rates of the female population of England & Wales between 1991 and
2000 for ages 60 to 89. (blue = low, red = high).
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In contrast to previous neural network applications in mortality forecasting, we quantify
prediction uncertainty.

Goal:
P
(
m̂i , lower

x ,t ≤ mi
x ,t ≤ m̂i , upper

x ,t
)
≥ a for some large a ∈ [0, 1].

Assumption:
log mi

x ,t = log mi , true
x ,t + εi

x ,t .

Bias-variance decomposition:

E
((

log mi
x ,t − log m̂i

x ,t
)2) = Bias

(
log m̂i

x ,t
)2 + Var

(
log m̂i

x ,t
)

+ Var
(
εi

x ,t
)

.

We follow the approach proposed by Heskes [1996] for general FFNNs:
Assume Bias(log m̂) ≡ 0.
Estimate model uncertainty Var

(
log m̂i

x ,t
)
based on empirical ensemble variance.

Train an additional neural network to estimate noise variance Var
(
εi

x ,t
)
.

Under a normal assumption, this yields the interval bounds

log m̂i , lower|upper
x ,t := log m̂i

x ,t ± Φ−1
1 + a

2

 V̂ar
(
log mi

x ,t − log m̂i
x ,t

)
.
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The CNN yields accurate point forecasts and reliable interval forecasts.

Table: Out-of-sample error measures for 54 populations, ages 60 to 89 and years 2007 to 2016 (models trained on data up to
2006), data from Human Mortality Database [2019].

Model MSE×105 MAE×103 MdAPE[%] PICP[%] MPIW

LC 5.5 4.0 5.8 74.3 0.011

FFNN 2.6 3.1 6.1 92.9 0.015

RNN 5.1 3.9 5.3 89.9 0.015

CNN 3.4 3.3 5.0 97.3 0.020

We consider feed-forward [Richman and Wüthrich, 2019a] and recurrent
[Richman and Wüthrich, 2019b] neural networks (FFNNs and RNNs) and a
Lee-Carter [Lee and Carter, 1992, LC] model as benchmarks.
The FFNN performs well with respect to squared and absolute error but
rather weakly in terms of the relative error.
The CNN is the only model exceeding the required PICP of 95%.

Error measures
Point forecasts:

MSE := 1
N

∑
x ,t,i

(
m̂i

x ,t −mi
x ,t
)2

,

MAE := 1
N

∑
x ,t,i

∣∣∣m̂i
x ,t −mi

x ,t
∣∣∣ ,

MdAPE := medianx ,t,i


∣∣∣m̂i

x ,t −mi
x ,t
∣∣∣

mi
x ,t

 · 100%.

Interval forecasts:

PICP := 1
N

∑
x ,t,i

1{mi
x ,t∈

[
m̂i , lower

x ,t ,m̂i , upper
x ,t

]},
MPIW := 1

N
∑

x ,t,i

(
m̂i , upper

x ,t − m̂i , lower
x ,t

)
.
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There is potential for further improvement.

Possible extensions and improvement ideas for our model include

data augmentation,

stacking, i.e., setting up combinations of model architectures (e.g., FFNN and CNN),

further investigating explainability of the CNN (e.g., via SHAP).

For more details, see our preprint at ssrn.com/abstract=3796051 or contact me at
simon.schnuerch@itwm.fraunhofer.de.
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