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Diego Zappa et al.

• Our aim is to exploit roads characteristics, traffic, socio-demographic local
data and the location of past accidents to estimate the risk of getting car
crashes for any edge of a (local or even nationwide) road network.

• Possible benefits
• For policy makers: more efficient use of public resources to reduce the risk of accidents (i.e.

where is it necessary to invest?)

• For civil engineers: evidence of what are the main factors that may impact onto the risk of
an accident (i.e. are roundabouts riskier than traffic lights?)

• For everyday use: which roads are safer?

• For insurance companies: how to link the risk of drivers’ trajectories to expected frequency
(blakboxes recordings are necessary)

what are we presenting? (1)



what are we presenting? (2)

• In particular we focus on “where the policyholder drives”

• We do not consider here (research is in progress) other features that can be detected by
telematic data and that can affect the risk as:

• Driving behaviour (see, e.g., Gao. Meng, Wuthrich (2022), Huang, Meng (2019), Wuthrich and
Buser (2019), Ayuso et al. (2018), …)

• Driving habits (e.g. KM, daytime, weather conditions, etc.)

• We follow a combined approach:

• Penalized regression and spatially lagged models will be applied in order to assess the risk on the
basis of a set of features related to the characteristics of the streets.

• From the spatial object we build a weighted network, where vertices and arcs correspond to
geographical elements as junctions and roads and where the assessed risk of each segment is
used as a weight.

• We will mainly focus on results and problems
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Road details (e.g.  
Open Street Map)

Demographic database 
(population density, 
building density, 
commuting people)

Traffic source (e.g. 
Google, other
providers)

Location of accidents
(e.g. from insurance 
companies, open data, 
ISTAT)

Region/municipality/ZIP 
boundaries (from ISTAT, 
other private sources)

𝐸 #𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 ൌ 𝑔 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠,𝜃 ൅ offset

Weather
conditions

Which “ingredients” did we use?



The data
# car 

crashes

# 
traffic 
lights

# 
pedestrian 
crossings

# 
junctionsURBAN

highway
(length)

highway 
(type)id_link

0005Y119Tertiary1
0025Y309Secondary2
0304N11.3Primary3
2015Y11.3Primary4
0127Y150Primary5
1006N35.4Secondary6
0306Y67.9Secondary7
3016Y97.7Tertiary8
0004N157Motorway9
1106N150Other10

For each OSM segment save/compute

• Type of road (highway)

• Features (if available) e.g. surface, maxspeed, lit…

• Number of junctions (computed exogenously: proxy very close 
to reality)

• Number of traffic lights

• Number of pedestrian crossings

• Etc.



Main issues related to data

Road details (e.g. Open Street Map)
• links details are often unbalanced because of missing information
• some very relevant details (i.e. number of crossings) are not available

and must be ad hoc estimated

Traffic source (e.g. Google, other providers)
• high quality open access data are barely available
• the size of datasets are in terabytes even for short time periods

Demographic databases (population, building density, 
commuting people)
• they are not available at the link level but mainly at a small area level
Region/municipality/ZIP boundaries (from ISTAT, other sources)
• what is the optimal subregion to fit data?

The number of road crossings is not directly
available in the OSM database. For each road, we
computed it as the number of segments that have in
common one coordinate with that road.
This method represents an approximation of the 
true crossings (for instance, two roads at different 
level one above the other through a bridge),.Much 
more precise db allow to have knowledge of the 
road levels.

Coordinates of accidents are not always strictly in
line with a segment. Approximations are due to
proxies implicit into the reverse geocoding algorithm
or to errors in the registration of accident locations.
We project (orthogonally) that coordinates onto the
closest segment

Location of accidents (e.g. from company, open data ISTAT)
• In general, datasets contains location of accidents. 
• Reverse geocoding (i.e.  lat/long coordinates) algorithms are necessary

but othen with limited precisions

Diego Zappa et al.



Some details about

#Accidents
• Data fitting involves (so far) only crashes that resulted in fatalities or injuries of at least one person. We do 

not consider in this presentation accidents with damages only to vehicles or objects (data are often 
proprietary).

• Time dependence is somewhere measurable. It is not true for any subregion. At moment, data refers to 
quarters of 5 years from 2016 to 2020. Data of 2021 arrived 2w ago. It is in process.

• Spatial dependence is mostly retated to the network structure dependence.

𝒈() (see next slide)

Features
• most of covariates are categorical or transformed into classes to allow estimate comparison among

regions
• spatial dependences is considered
• distance matrix

Offset
VehicleMilesTravelled (VMT) = #vehicles * length (total km travelled for each segment) or length, if traffic is
not available

𝐸 #𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 ൌ 𝑔 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠,𝜃 ൅ 𝑜𝑓𝑓𝑠𝑒𝑡



Literature often makes use of hierarchical models. E.g.

At the first stage : 𝑌|λ ∼𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺλሻ
At the second stage: log λ ൌ  𝑋𝛽 ൅ 𝜃 ൅ 𝜑
At the third stage: the specification for the priors

Fit involves INLA methods

To include spatial dependence of features we have used the  Spatial Durbin model 
(SDM) 

log λ ൌ 𝐼௡ െ 𝜌𝑊 ିଵሺ𝑋𝛽 ൅𝑊𝑋𝛾 ൅ 𝜃ሻ

It allows for spatial correlation of the outcome as well as it considers the lagged matrix of 
covariates as regressors like the SLX model.

=> We have tested
•Spatial lagged models in a bayesian framework
•Elastic net to consider model flexibility in a frequentist framework
•Local graphical neural networks (research in progress) 

The general model currently tested



Distances

• To compute distances, we convert the street network in a graph
focusing on a “junction graph” (see, e.g., Marshall et al., 2018), where
each segment is an arc and nodes are given by junctions (or by
termination of closed streets).

• Formally, given the street network, we build a graph 𝐺 ൌ  ሺ𝑉;𝐸ሻ where
𝑉 and 𝐸 are respectively the set of 𝑛 vertices and 𝑚 arcs. Two nodes
are adjacent if there is an arc 𝑖, 𝑗  𝜖 𝐸 (i.e. a road segment) connecting
them

• In particular, we consider at moment a directed and
weighted network 𝐺௪ equal to 𝐺 , where each arc is
weighted with the length of the segment.

• Distances between two roads have been computed by
adding centroid to each segment and by computing the
directed weighted shortest path between two centroids.

• The shortest path problem is the problem of finding a path
between two nodes in a graph such that the sum of the
weights of its constituent edges is minimized.



An example



An example

Glmnet
Input: 38 predictors
Selected: 16
Execution time: 1’38"

SDM
Input: 38 predictors
Selected: 16
Execution time: 6’12"
Model hyperparameters:

mean    sd 0.025quant 0.5quant 0.975quant  mode
Precision for id_link 0.417 0.019      0.379    0.417      0.455 0.418
Rho for id_link 0.502 0.062      0.372    0.506      0.612 0.521



Fit vs observed
(at an aggregate level)
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Risk based on time and area
Mean, 90% and 10% quantiles by 

postal code

City of Milan
Province of Milan

Borders 
with other
provinces

Risk wrt to time



The effect of traffic
Functional Class =1: roads allow for high volume, maximum speed traffic movement between and 
through major metropolitan areas.
Functional Class = 5 is applied to roads whose volume and traffic movement are below the level of any 
functional class. In addition, walkways, truck only roads, bus only roads, and emergency vehicle only 
roads.

In red: Exposure



76543Speed 
Category

<= 3031‐5051‐7071‐90>90KPH

<= 2021‐3031‐4041‐54>54MPH

Speed and 
Number of crossroads



Other characteristics

FittedObservedPresence

0.4%0.34%Y
Roundabout

1.51%1.57%N

7.8%8.12%Y
Traffic Light

1.22%1.22%N



Density
Population and Buildings



Additional aspects based on network theory

We deal now with two types of network:
• 𝐺 ൌ  ሺ𝑉;𝐸ሻ an unweighted network

with 𝑛 nodes (junctions/road 
terminations) and 𝑚 arcs (road 
segments)

• 𝐺௪  ൌ  ሺ𝑉;𝐸;𝑾ሻ a weighted network 
equal to 𝐺, where each arc is weighted
according to the risk of the segment
detected at previous step.

Considering only city of Milan and 
province, we have an unweighted directed
network with the following characteristics:
• roughly 138 thousand of nodes and 3.3 

milion of arcs.
• very sparse (density is close to zero)
• assortativity and transitivity

coefficients are also very low



Risk vs centrality
• We focus here on the topology of the network, assessing the global importance of network elements.
• In particular, focusing on road segments and junctions, the node and edge betweenness appears as key indicators for this 

context. The node betweenness is a function of the number of shortest paths between pairs of nodes that pass through that 
node (see Newman, Girvan, 2004):

𝑏௜ ൌ ෍
𝑛௛,௞ሺ𝑖ሻ 
𝑛௛,௞௛,௞ ఢ ௏

௛ஷ௞ஷ௜
where 𝑛௛,௞ is the number of shortest paths between ℎ and 𝑘 and 𝑛௛,௞ሺ𝑖ሻ is the number of shortest paths between ℎ and 𝑘 that passes 
through the node 𝑖. A similar definition can be provided in case of edges.

• Since the computation on the whole network 𝐺 is really time consuming and does not provide significant value added, we 
considered separately nodes in the sub-graphs 𝐺௭ based on the splitting of the whole network according to  cities and zip 
codes. 



Minimum Length vs Minimum Risk

• We apply the shortest path 
between two points.

• In the plot, the shortest path has 
been applied considering:

• The minimum length (in blue)
• The minimum risk (in black)



Conclusions

• The proposed approach exploits the use of open-source data to 
estimate the risk related to where the policyholder drives.

• It is a work in progress and several points are under investigation. In 
particular, at moment, we are evaluating the possibility of:

– Improving results merging average speed per link
– Extending results (computational issues are present)
– Consider time dependence (scarcity of data per time unit might be present)
– Validating the model using training and testing
– Testing Neural networks including spatial dependence
– Evaluating which improvements these results can offer for insurance pricing.
– Testing the model using data of other countries

Diego Zappa et al.
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