From Chain Ladder to Probabilistic Neural Networks for Claims Reserving

https://institute-and-faculty-of-actuaries.github.io/mlrblog/post/research/chain_ladder_to_individual_mdn/

Jacky Poon

What is the potential with neural networks?

Advantages:

- Residual networks generalize GLMs
- Used in state-of-the-art models for e.g. image, text, audio transcriptions
- Transformers quite powerful for sequence data generally
- Entity embeddings can effectively model categorical variables
- Output probability distributions with mixture density

Issues to consider:

- In time series, simpler models often perform as well as neural networks ("Are Transformers Effective for Time Series Forecasting?" A. Zeng et al)
- With tabular-only data, gradient boosted decision trees are often easy to calibrate to a good result.
- Random initialization may lead to variance in model predictions
- Complexity vs simpler models

About the author

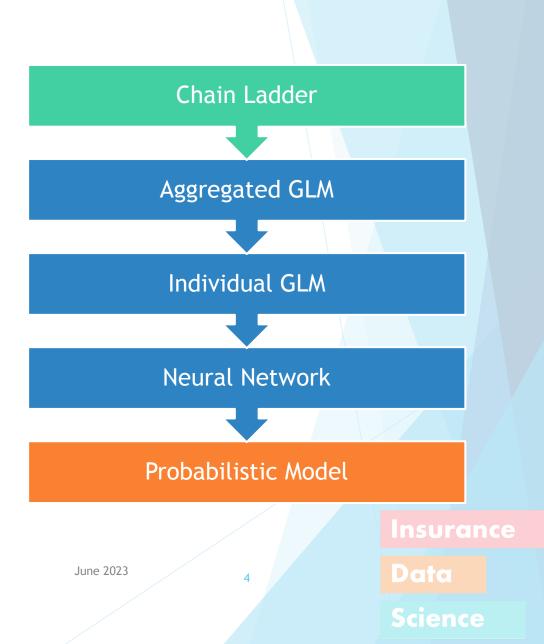
- Member of Machine Learning in Reserving Working Party (with IFoA)
- Head of Finance at nib Travel
 - Experience in pricing & analytics
- Convenor for the Young Data Analytics Working Group (with Actuaries Institute in Australia)
 - Newsletter, podcast, articles, events
 - Check out our "Actuaries' Analytical Cookbook"! <u>https://actuariesinstitute.github.i</u> o/cookbook/docs/index.html



The journey we took:

- Start with a chain ladder model
- Make incremental changes
- Working model at each step
- Finish with probabilistic neural network model
- Simple simulated dataset
- Code available: <u>https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/research/chain_ladder_to_individual_m_dn/</u>

Share some insights from the journey...



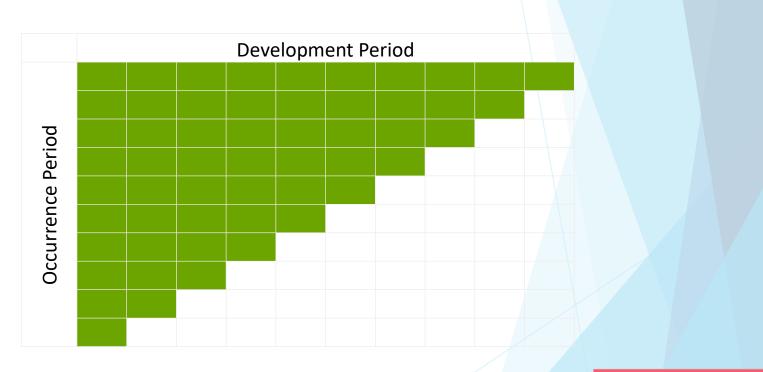
Key Observations

From this journey

Chain ladder is a GLM

There is a GLM form of chain ladder:

- Log link, over-dispersed Poisson
- Incremental Payments ~ Occurrence Period + Development Period
- Occurrence Period and Development Period are one-hot encoded (1-0 flags for occurrence and development period = n, n=1...N)
- See <u>https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/foundations/python-glms/</u>

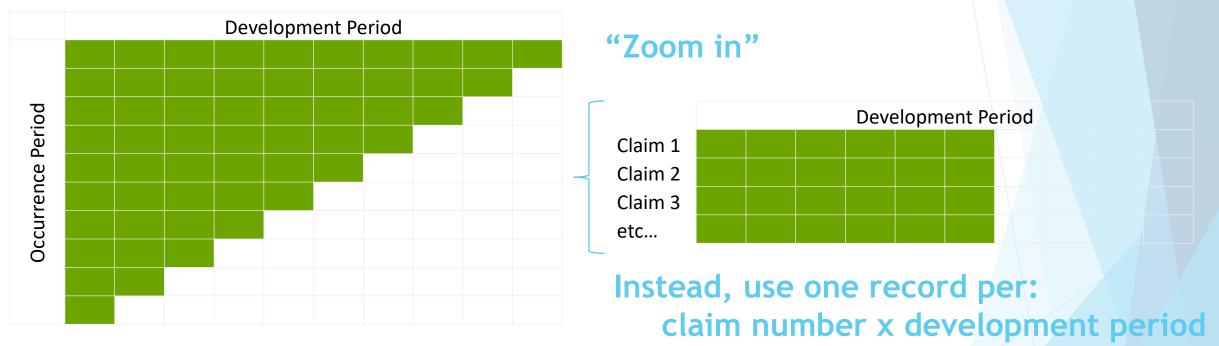


June 2023

6 Insurance Data Science

CL inspires an individual data format:

Chain ladder GLM: record per occurrence period x development period

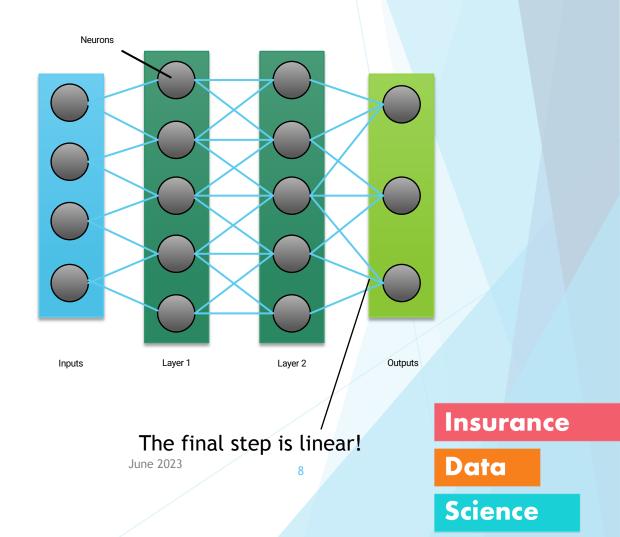


 \rightarrow Per claim projection (IBNER)

A linear model is a neural network

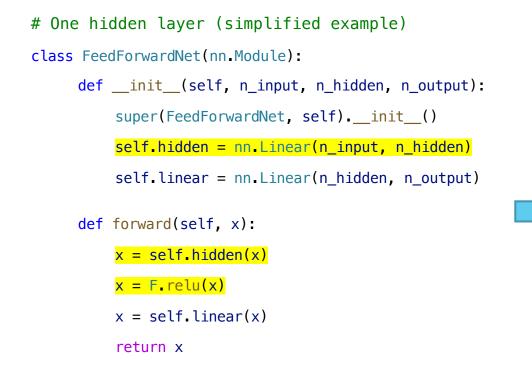
(With no hidden layers)

- A feedforward neural network is a type of neural network where information flows in one direction, from the input layer through one or more hidden layers to the output layer.
- Each layer in a feedforward neural network consists of a set of nodes, or neurons, that perform a **linear transformation of their inputs** followed by a non-linear activation function.
- The linear transformation performed by each neuron is similar to that of a linear model: the inputs are multiplied by a set of weights, and a bias term is added to the result.
- The activation function applied to the output of each neuron introduces non-linearity into the model, allowing it to learn complex relationships between the input and output variables.
- > The outputs are a linear transform of the final hidden layer.
- Consequently, a feedforward network can be considered a linear model of features, being the final hidden layer.



A linear model is a neural network

With no hidden layers



No hidden layers = LM
class LinearModel(nn.Module):
 def __init__(self, n_input, n_output):
 super(LinearModel, self).__init__()

self.linear = nn.Linear(n_input, n_output)

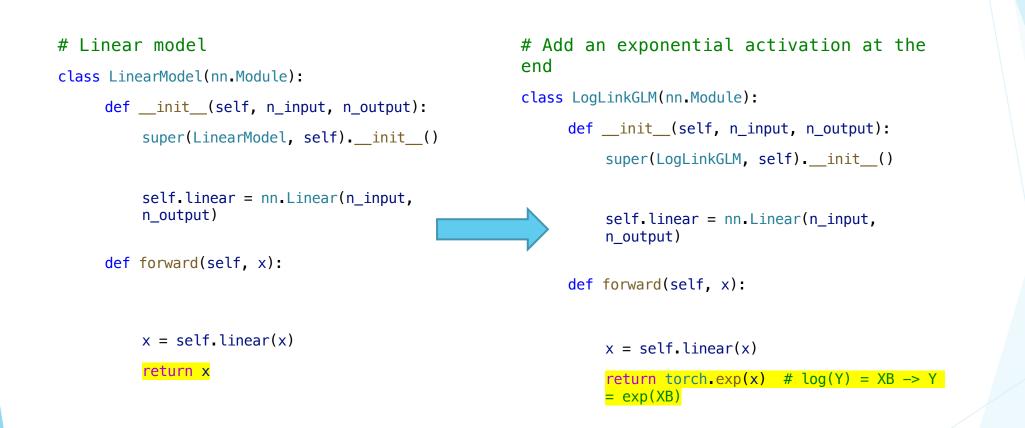
def forward(self, x):

x = self.linear(x)
return x

Gradient descent methods can be used to fit instead of iterated reweighted least squares - minimize normal loss to maximise likelihood

Insurance

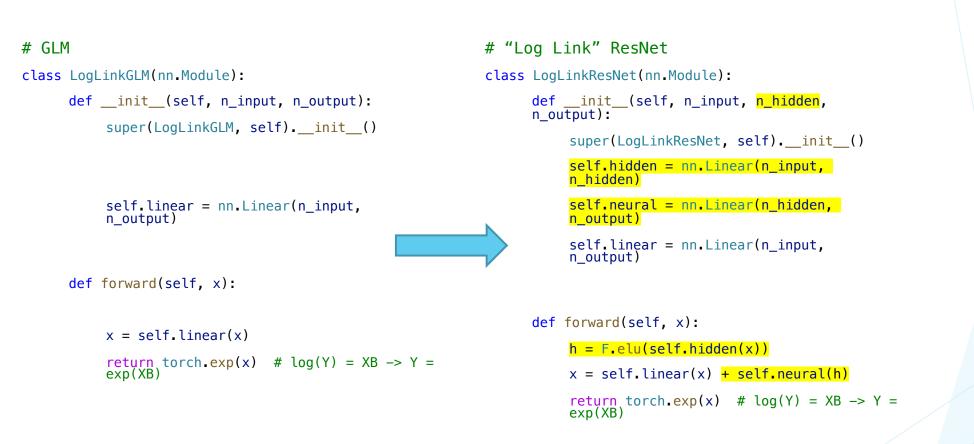
A GLM is also a neural network



Add exponential activation to convert from a linear model to a GLM with log link. Poisson loss function can be minimized to fit the GLM.

Insurance

Neural networks can be "GLM+"



A residual network is similar to a linear model with additional non-linear deep learning features. By including the exponential transformation at the final step, results become similar to a log-link GLM.

Insurance

Neural networks are flexible

- We test out our "SplineNet" design:
 - Split inputs into individual features
 - For each feature, fit a hidden layer on just that feature as a one-way "spline"
 - Fit an interaction hidden layer on all inputs as per a residual network but
 - Hide the interaction layer behind a "gate" weight, which is initialized in an "off" state

The forward function defines how you get y from X.

def forward(self, x):

Apply one-ways

chunks = torch.split(x, [1 for i in range(0, self.n_input)], dim=1)

splines = torch.cat([self.oneways[i](chunks[i]) for i in range(0, self.n_input)], dim=1)

Sigmoid gate

interact_gate = torch.sigmoid(self.interactions)

splines_out = self.oneway_linear(F.elu(splines)) * (1 interact_gate)

interact_out =
self.linear(F.elu(self.hidden(self.dropout(x)))) *
(interact_gate)

Add ResNet style

return self.inverse_of_link_fn(splines_out + interact_out)

Insurance

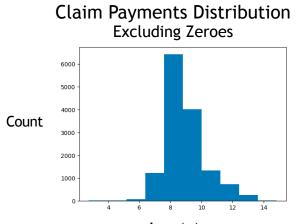
June 2023

12

Data

Lognormal Mixture Density Network

Capture variability: Output variable modelled as the weighted sum of lognormal distributions.



Log(y) α is weight of each distribution

- μ and σ is lognormal's μ and σ
- Mean is $\sum_{k=1}^{n} a_k \cdot e^{(\mu_k + \frac{\sigma_k^2}{2})}$
- Some tricks to ensure numerical stability (details in notebook)

SMALL = 1e-7

def log_mdn_loss_fn(y_dists, y): y = torch.log(y + SMALL) # log(y) ~ Normal alpha, mu, sigma = y_dists m = torch.distributions.Normal(loc= mu, scale=sigma) # Normal loss = - torch.logsumexp(m.log_prob(y) + torch.log(alpha + 1e-15), dim=-1)

return torch.mean(loss) #
Average over dataset

June 2023

13

Insurance

Data

Tips and tricks for neural networks for claims data

- Initialisation strategy: Bias: Set to mean(log(y)) to converge faster, Weights: Use zeroes for final layer for stability (see FixUp Initialisation)
- Batch size data is sparse so as high as possible (we used the full dataset)
- Optimiser using AdamW
- Architecture: Neural networks are flexible and the structure can be varied to needs.
- Hyperparameter search find best model parameters for Neurons in hidden layer, lasso penalty, weight decay, dropout
- "Rolling origin" cross validation
- Claim history feature engineering

June 2023

14

Insurance

Data

Comparison

On Simulated Data

Loss data

- Few examples of publicly available, detailed, real world data.
- Code for this presentation is fully available, so using simulated data.
- Five datasets from using a simulated package, SPLICE.
- Includes payments and reserves, but not exposures.
- Different behaviour for large vs attritional claims.

- **"Scenario 1**: simple, homogeneous claims experience, with zero inflation.
- Scenario 2: slightly more complex than 1, with dependence of notification delay and settlement delay on claim size, and 2% p.a. base inflation.
- Scenario 3: steady increase in claim processing speed over occurrence periods (i.e. steady decline in settlement delays).
- **Scenario 4**: inflation shock at time 30 (from 0% to 10% p.a.).
- Scenario 5: default distributional models, with complex dependence structures (e.g. dependence of settlement delay on claim occurrence period)."

From <u>https://github.com/agi-</u> lab/SPLICE/tree/main/datasets

June 2023

16

Insurance

Data

Results:

Dataset 5 Leaderboard

Meth od	Outstanding Claims Liability	Period Level MSE	Period Level Absolute Error	Total OCL Absolute Error	Total OCL Absolute Percent Error	
1	True Ultimate	415,208,224.0	0.0	0.0	0.0	0.0
7	D/O SplineNet	377,212,928.0	17,353,778.0	72,897,200.0	37,995,252.0	9.2
8	D/O SplineMDN	377,212,928.0	17,353,778.0	72,897,200.0	37,995,252.0	9.2
6	D/O ResNet	456,777,888.0	16,902,854.0	75,666,032.0	41,569,676.0	10.0
10	Detailed ResNet	478,930,661.1	41,708,402.1	157,432,251.7	63,722,452.3	15.3
11	Detailed SplineNet	483,915,060.2	42,700,794.0	161,107,670.6	68,706,851.4	16.5
12	Detailed SplineMDN	483,915,060.2	42,700,794.0	161,107,670.6	68,706,851.4	16.5
9	D/O SplineNet CV	548,784,064.0	31,238,146.0	146,933,376.0	133,575,840.0	32.2
2	Chain Ladder	553,335,232.0	43,015,804.0	174,280,848.0	138,127,024.0	33.3
3	GLM Chain Ladder	553,337,792.0	43,016,100.0	174,282,560.0	138,129,600.0	33.3
13	Detailed GBM	563,046,264.0	54,976,179.2	193,207,856.1	147,838,055.2	35.6
5	GLM Spline	565,708,352.0	35,842,056.0	164,710,784.0	150,500,096.0	36.2
4	GLM Individual	574,341,184.0	42,662,360.0	174,327,264.0	159,132,944.0	38.3
0	Paid to Date	0.0	102,023,488.0	415,208,224.0	415,208,224.0	100.0

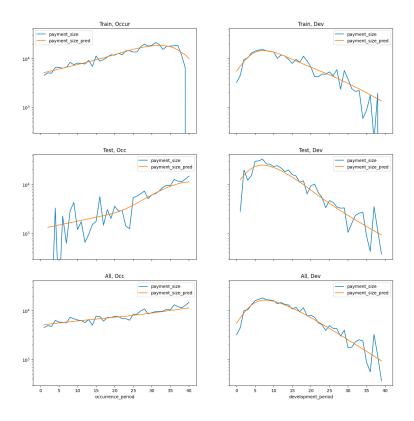
NN's do well for dataset 5: detailed features not leading to stronger predictions.

June 2023

17

Insurance Data Science

Customising the structure



- "SplineNet", our customized design
- Using only occurrence and development periods only (but on individual data)
- Fits the development and occurrence trends across both train and test data

June 2023

18

Insurance

Data

Summary:

- Individual, granular models can be valuable in some circumstances
- Neural networks can effectively model trends in claims data:
 - Reflect trends
 - Potential to use detailed claims information
 - Probabilistic output
- Link for full details: <u>https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/research/chain_ladder_to_individual_mdn/</u>

June 2023

19