
From Chain Ladder to
Probabilistic Neural Networks

for Claims Reserving

Jacky Poon

June 2023

https://institute-and-faculty-of-actuaries.github.io/mlr-
blog/post/research/chain_ladder_to_individual_mdn/

https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/research/chain_ladder_to_individual_mdn/
https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/research/chain_ladder_to_individual_mdn/

What is the potential with neural
networks?

Advantages:

u Residual networks generalize GLMs

u Used in state-of-the-art models for
e.g. image, text, audio
transcriptions

u Transformers quite powerful for
sequence data generally

u Entity embeddings can effectively
model categorical variables

u Output probability distributions
with mixture density

Issues to consider:

u In time series, simpler models often perform as
well as neural networks (“Are Transformers
Effective for Time Series Forecasting?” A. Zeng
et al)

u With tabular-only data, gradient boosted
decision trees are often easy to calibrate to a
good result.

u Random initialization may lead to variance in
model predictions

u Complexity vs simpler models

June 2023
2

About the author

u Member of Machine Learning in
Reserving Working Party (with IFoA)

u Head of Finance at nib Travel

u Experience in pricing & analytics

u Convenor for the Young Data
Analytics Working Group (with
Actuaries Institute in Australia)

u Newsletter, podcast, articles,
events

u Check out our “Actuaries’
Analytical Cookbook”!
https://actuariesinstitute.github.i
o/cookbook/docs/index.html

June 2023
3

https://actuariesinstitute.github.io/cookbook/docs/index.html
https://actuariesinstitute.github.io/cookbook/docs/index.html

The journey we took:

Probabilistic Model

Neural Network

Individual GLM

Aggregated GLM

Chain Ladder

June 2023
4

• Start with a chain ladder model

• Make incremental changes

• Working model at each step

• Finish with probabilistic neural network model

• Simple simulated dataset

• Code available: https://institute-and-faculty-of-
actuaries.github.io/mlr-
blog/post/research/chain_ladder_to_individual_m
dn/

Share some insights from the journey…

https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/research/chain_ladder_to_individual_mdn/
https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/research/chain_ladder_to_individual_mdn/
https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/research/chain_ladder_to_individual_mdn/
https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/research/chain_ladder_to_individual_mdn/

Key Observations
From this journey

June 2023

5

Chain ladder is a GLM

There is a GLM form of chain ladder:
u Log link, over-dispersed Poisson

u Incremental Payments ~
Occurrence Period + Development
Period

u Occurrence Period and
Development Period are one-hot
encoded (1-0 flags for occurrence
and development period = n,
n=1...N)

u See https://institute-and-faculty-
of-actuaries.github.io/mlr-
blog/post/foundations/python-
glms/

Development Period

O
cc

ur
re

nc
e

Pe
rio

d

June 2023
6

https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/foundations/python-glms/
https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/foundations/python-glms/
https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/foundations/python-glms/
https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/foundations/python-glms/

CL inspires an individual data format:

Development Period
Claim 1
Claim 2
Claim 3
etc…

June 2023
7

Development Period

O
cc

ur
re

nc
e

Pe
rio

d

Instead, use one record per:
claim number x development period

“Zoom in”

Chain ladder GLM: record per occurrence period x development period

→ Per claim projection (IBNER)

A linear model is a neural network

• A feedforward neural network is a type of neural network
where information flows in one direction, from the input
layer through one or more hidden layers to the output layer.

• Each layer in a feedforward neural network consists of a set
of nodes, or neurons, that perform a linear transformation
of their inputs followed by a non-linear activation function.

• The linear transformation performed by each neuron is
similar to that of a linear model: the inputs are multiplied
by a set of weights, and a bias term is added to the result.

• The activation function applied to the output of each neuron
introduces non-linearity into the model, allowing it to learn
complex relationships between the input and output
variables.

u The outputs are a linear transform of the final hidden layer.

u Consequently, a feedforward network can be considered a
linear model of features, being the final hidden layer.

June 2023
8

(With no hidden layers)

Inputs OutputsLayer 1 Layer 2

Neurons

The final step is linear!

A linear model is a neural network

One hidden layer (simplified example)

class FeedForwardNet(nn.Module):

def __init__(self, n_input, n_hidden, n_output):

super(FeedForwardNet, self).__init__()

self.hidden = nn.Linear(n_input, n_hidden)

self.linear = nn.Linear(n_hidden, n_output)

def forward(self, x):

x = self.hidden(x)

x = F.relu(x)

x = self.linear(x)

return x

No hidden layers = LM

class LinearModel(nn.Module):

def __init__(self, n_input, n_output):

super(LinearModel, self).__init__()

self.linear = nn.Linear(n_input, n_output)

def forward(self, x):

x = self.linear(x)

return x

With no hidden layers

Gradient descent methods can be used to fit instead of iterated
reweighted least squares – minimize normal loss to maximise likelihood

A GLM is also a neural network

Linear model

class LinearModel(nn.Module):

def __init__(self, n_input, n_output):

super(LinearModel, self).__init__()

self.linear = nn.Linear(n_input,
n_output)

def forward(self, x):

x = self.linear(x)

return x

Add an exponential activation at the
end

class LogLinkGLM(nn.Module):

def __init__(self, n_input, n_output):

super(LogLinkGLM, self).__init__()

self.linear = nn.Linear(n_input,
n_output)

def forward(self, x):

x = self.linear(x)

return torch.exp(x) # log(Y) = XB -> Y
= exp(XB)

Add exponential activation to convert from a linear model to a GLM with
log link. Poisson loss function can be minimized to fit the GLM.

Neural networks can be “GLM+”

GLM
class LogLinkGLM(nn.Module):

def __init__(self, n_input, n_output):

super(LogLinkGLM, self).__init__()

self.linear = nn.Linear(n_input,
n_output)

def forward(self, x):

x = self.linear(x)

return torch.exp(x) # log(Y) = XB -> Y =
exp(XB)

“Log Link” ResNet
class LogLinkResNet(nn.Module):

def __init__(self, n_input, n_hidden,
n_output):

super(LogLinkResNet, self).__init__()

self.hidden = nn.Linear(n_input,
n_hidden)

self.neural = nn.Linear(n_hidden,
n_output)

self.linear = nn.Linear(n_input,
n_output)

def forward(self, x):

h = F.elu(self.hidden(x))

x = self.linear(x) + self.neural(h)

return torch.exp(x) # log(Y) = XB -> Y =
exp(XB)

A residual network is similar to a linear model with additional non-linear
deep learning features. By including the exponential transformation at
the final step, results become similar to a log-link GLM.

Neural networks are flexible

u We test out our “SplineNet”
design:
u Split inputs into individual

features

u For each feature, fit a hidden
layer on just that feature as a
one-way “spline”

u Fit an interaction hidden layer
on all inputs as per a residual
network but

u Hide the interaction layer
behind a “gate” weight, which
is initialized in an “off” state

The forward function defines how you get y from X.

def forward(self, x):

Apply one-ways

chunks = torch.split(x, [1 for i in range(0, self.n_input)],
dim=1)

splines = torch.cat([self.oneways[i](chunks[i]) for i in
range(0, self.n_input)], dim=1)

Sigmoid gate

interact_gate = torch.sigmoid(self.interactions)

splines_out = self.oneway_linear(F.elu(splines)) * (1 -
interact_gate)

interact_out =
self.linear(F.elu(self.hidden(self.dropout(x)))) *
(interact_gate)

Add ResNet style

return self.inverse_of_link_fn(splines_out + interact_out)

June 2023
12

Lognormal Mixture Density Network

u Capture variability: Output variable
modelled as the weighted sum of log-
normal distributions.

u 𝛼 is weight of each distribution

u 𝜇 and 𝜎 is lognormal’s 𝜇 and 𝜎

u Mean is ∑!"#$ 𝑎! & 𝑒
(&!'

"!
#

)

u Some tricks to ensure numerical
stability (details in notebook)

SMALL = 1e-7

def log_mdn_loss_fn(y_dists, y):
y = torch.log(y + SMALL) #
log(y) ~ Normal
alpha, mu, sigma = y_dists
m =
torch.distributions.Normal(loc=
mu, scale=sigma) # Normal
loss = -
torch.logsumexp(m.log_prob(y) +
torch.log(alpha + 1e-15), dim=-
1)
return torch.mean(loss) #
Average over dataset

June 2023
13

Log(y)

Claim Payments Distribution
Excluding Zeroes

Count

Tips and tricks for neural networks for
claims data

u Initialisation strategy: Bias: Set to mean(log(y)) to converge faster, Weights:
Use zeroes for final layer for stability (see FixUp Initialisation)

u Batch size – data is sparse so as high as possible (we used the full dataset)

u Optimiser – using AdamW

u Architecture: Neural networks are flexible and the structure can be varied to
needs.

u Hyperparameter search – find best model parameters for Neurons in hidden
layer, lasso penalty, weight decay, dropout

u “Rolling origin” cross validation

u Claim history feature engineering

June 2023
14

Comparison
On Simulated Data

June 2023

15

Loss data

u Few examples of publicly available,
detailed, real world data.

u Code for this presentation is fully
available, so using simulated data.

u Five datasets from using a simulated
package, SPLICE.

u Includes payments and reserves, but not
exposures.

u Different behaviour for large vs attritional
claims.

• “Scenario 1: simple, homogeneous claims
experience, with zero inflation.

• Scenario 2: slightly more complex than 1, with
dependence of notification delay and
settlement delay on claim size, and 2% p.a.
base inflation.

• Scenario 3: steady increase in claim processing
speed over occurrence periods (i.e. steady
decline in settlement delays).

• Scenario 4: inflation shock at time 30 (from 0%
to 10% p.a.).

• Scenario 5: default distributional models, with
complex dependence structures (e.g.
dependence of settlement delay on claim
occurrence period).”

From https://github.com/agi-
lab/SPLICE/tree/main/datasets

June 2023
16

https://github.com/agi-lab/SPLICE/tree/main/datasets
https://github.com/agi-lab/SPLICE/tree/main/datasets

Results:
Dataset 5 Leaderboard

June 2023
17

Meth
od

Outstanding Claims
Liability

Period Level MSE Period Level
Absolute Error

Total OCL
Absolute Error

Total OCL
Absolute
Percent Error

1 True Ultimate 415,208,224.0 0.0 0.0 0.0 0.0

7 D/O SplineNet 377,212,928.0 17,353,778.0 72,897,200.0 37,995,252.0 9.2

8 D/O SplineMDN 377,212,928.0 17,353,778.0 72,897,200.0 37,995,252.0 9.2

6 D/O ResNet 456,777,888.0 16,902,854.0 75,666,032.0 41,569,676.0 10.0

10 Detailed ResNet 478,930,661.1 41,708,402.1 157,432,251.7 63,722,452.3 15.3

11 Detailed SplineNet 483,915,060.2 42,700,794.0 161,107,670.6 68,706,851.4 16.5

12 Detailed SplineMDN 483,915,060.2 42,700,794.0 161,107,670.6 68,706,851.4 16.5

9 D/O SplineNet CV 548,784,064.0 31,238,146.0 146,933,376.0 133,575,840.0 32.2

2 Chain Ladder 553,335,232.0 43,015,804.0 174,280,848.0 138,127,024.0 33.3

3 GLM Chain Ladder 553,337,792.0 43,016,100.0 174,282,560.0 138,129,600.0 33.3

13 Detailed GBM 563,046,264.0 54,976,179.2 193,207,856.1 147,838,055.2 35.6

5 GLM Spline 565,708,352.0 35,842,056.0 164,710,784.0 150,500,096.0 36.2

4 GLM Individual 574,341,184.0 42,662,360.0 174,327,264.0 159,132,944.0 38.3

0 Paid to Date 0.0 102,023,488.0 415,208,224.0 415,208,224.0 100.0

NN’s do well for dataset 5: detailed features not
leading to stronger predictions.

Customising the structure

u “SplineNet”, our customized design

u Using only occurrence and
development periods only (but on
individual data)

u Fits the development and
occurrence trends across both train
and test data

June 2023
18

Summary:

u Individual, granular models can be valuable in some
circumstances

u Neural networks can effectively model trends in claims data:

u Reflect trends

u Potential to use detailed claims information

u Probabilistic output

u Link for full details: https://institute-and-faculty-of-
actuaries.github.io/mlr-
blog/post/research/chain_ladder_to_individual_mdn/

June 2023
19

https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/research/chain_ladder_to_individual_mdn/
https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/research/chain_ladder_to_individual_mdn/
https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/research/chain_ladder_to_individual_mdn/

