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What is the potential with neural 
networks?

Advantages:

u Residual networks generalize GLMs

u Used in state-of-the-art models for 
e.g. image, text, audio 
transcriptions

u Transformers quite powerful for 
sequence data generally

u Entity embeddings can effectively 
model categorical variables

u Output probability distributions 
with mixture density

Issues to consider:

u In time series, simpler models often perform as 
well as neural networks (“Are Transformers 
Effective for Time Series Forecasting?” A. Zeng 
et al)

u With tabular-only data, gradient boosted 
decision trees are often easy to calibrate to a 
good result. 

u Random initialization may lead to variance in 
model predictions

u Complexity vs simpler models
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About the author

u Member of Machine Learning in 
Reserving Working Party (with IFoA)

u Head of Finance at nib Travel

u Experience in pricing & analytics

u Convenor for the Young Data 
Analytics Working Group (with 
Actuaries Institute in Australia)

u Newsletter, podcast, articles, 
events

u Check out our “Actuaries’ 
Analytical Cookbook”! 
https://actuariesinstitute.github.i
o/cookbook/docs/index.html
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The journey we took:

Probabilistic Model

Neural Network

Individual GLM

Aggregated GLM

Chain Ladder
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• Start with a chain ladder model

• Make incremental changes

• Working model at each step

• Finish with probabilistic neural network model

• Simple simulated dataset

• Code available: https://institute-and-faculty-of-
actuaries.github.io/mlr-
blog/post/research/chain_ladder_to_individual_m
dn/

Share some insights from the journey…
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Key Observations
From this journey
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Chain ladder is a GLM

There is a GLM form of chain ladder:
u Log link, over-dispersed Poisson

u Incremental Payments ~ 
Occurrence Period + Development 
Period

u Occurrence Period and 
Development Period are one-hot 
encoded (1-0 flags for occurrence 
and development period = n, 
n=1...N)

u See https://institute-and-faculty-
of-actuaries.github.io/mlr-
blog/post/foundations/python-
glms/ 
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CL inspires an individual data format:

Development Period
Claim 1
Claim 2
Claim 3
etc…
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Instead, use one record per:
claim number x development period

“Zoom in”

Chain ladder GLM: record per occurrence period x development period 

→ Per claim projection (IBNER)



A linear model is a neural network

• A feedforward neural network is a type of neural network 
where information flows in one direction, from the input 
layer through one or more hidden layers to the output layer.

• Each layer in a feedforward neural network consists of a set 
of nodes, or neurons, that perform a linear transformation 
of their inputs followed by a non-linear activation function.

• The linear transformation performed by each neuron is 
similar to that of a linear model: the inputs are multiplied 
by a set of weights, and a bias term is added to the result.

• The activation function applied to the output of each neuron 
introduces non-linearity into the model, allowing it to learn 
complex relationships between the input and output 
variables.

u The outputs are a linear transform of the final hidden layer. 

u Consequently, a feedforward network can be considered a 
linear model of features, being the final hidden layer.
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(With no hidden layers)

Inputs OutputsLayer 1 Layer 2

Neurons

The final step is linear!



A linear model is a neural network

# One hidden layer (simplified example)

class FeedForwardNet(nn.Module):

def __init__(self, n_input, n_hidden, n_output):

super(FeedForwardNet, self).__init__()

self.hidden = nn.Linear(n_input, n_hidden)

self.linear = nn.Linear(n_hidden, n_output)

def forward(self, x):

x = self.hidden(x)

x = F.relu(x)

x = self.linear(x)

return x

# No hidden layers = LM

class LinearModel(nn.Module):

def __init__(self, n_input, n_output):

super(LinearModel, self).__init__()

self.linear = nn.Linear(n_input, n_output)

def forward(self, x):

x = self.linear(x)

return x

With no hidden layers

Gradient descent methods can be used to fit instead of iterated 
reweighted least squares – minimize normal loss to maximise likelihood



A GLM is also a neural network

# Linear model

class LinearModel(nn.Module):

def __init__(self, n_input, n_output):

super(LinearModel, self).__init__()

self.linear = nn.Linear(n_input, 
n_output)

def forward(self, x):

x = self.linear(x)

return x

# Add an exponential activation at the 
end

class LogLinkGLM(nn.Module):

def __init__(self, n_input, n_output):

super(LogLinkGLM, self).__init__()

self.linear = nn.Linear(n_input, 
n_output)

def forward(self, x):

x = self.linear(x)

return torch.exp(x)  # log(Y) = XB -> Y 
= exp(XB)

Add exponential activation to convert from a linear model to a GLM with 
log link. Poisson loss function can be minimized to fit the GLM.



Neural networks can be “GLM+”

# GLM
class LogLinkGLM(nn.Module):

def __init__(self, n_input, n_output):

super(LogLinkGLM, self).__init__()

self.linear = nn.Linear(n_input, 
n_output)

def forward(self, x):

x = self.linear(x)

return torch.exp(x)  # log(Y) = XB -> Y = 
exp(XB) 

# “Log Link” ResNet
class LogLinkResNet(nn.Module):

def __init__(self, n_input, n_hidden, 
n_output):

super(LogLinkResNet, self).__init__()

self.hidden = nn.Linear(n_input, 
n_hidden)

self.neural = nn.Linear(n_hidden, 
n_output)

self.linear = nn.Linear(n_input, 
n_output)

def forward(self, x):

h = F.elu(self.hidden(x))

x = self.linear(x) + self.neural(h)

return torch.exp(x)  # log(Y) = XB -> Y = 
exp(XB) 

A residual network is similar to a linear model with additional non-linear 
deep learning features. By including the exponential transformation at 
the final step, results become similar to a log-link GLM.



Neural networks are flexible

u We test out our “SplineNet” 
design:
u Split inputs into individual 

features

u For each feature, fit a hidden 
layer on just that feature as a 
one-way “spline”

u Fit an interaction hidden layer 
on all inputs as per a residual 
network but

u Hide the interaction layer 
behind a “gate” weight, which 
is initialized in an “off” state

# The forward function defines how you get y from X.

def forward(self, x):

# Apply one-ways

chunks = torch.split(x, [1 for i in range(0, self.n_input)], 
dim=1) 

splines = torch.cat([self.oneways[i](chunks[i]) for i in
range(0, self.n_input)], dim=1)

# Sigmoid gate

interact_gate = torch.sigmoid(self.interactions)

splines_out = self.oneway_linear(F.elu(splines)) * (1 -
interact_gate)

interact_out = 
self.linear(F.elu(self.hidden(self.dropout(x)))) * 
(interact_gate)

# Add ResNet style

return self.inverse_of_link_fn(splines_out + interact_out) 
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Lognormal Mixture Density Network

u Capture variability: Output variable 
modelled as the weighted sum of log-
normal distributions.

u 𝛼 is weight of each distribution

u 𝜇 and 𝜎 is lognormal’s 𝜇 and 𝜎

u Mean is ∑!"#$ 𝑎! & 𝑒
(&!'

"!
#

# )

u Some tricks to ensure numerical 
stability (details in notebook)

SMALL = 1e-7

def log_mdn_loss_fn(y_dists, y):
y = torch.log(y + SMALL) # 
log(y) ~ Normal
alpha, mu, sigma = y_dists
m = 
torch.distributions.Normal(loc=
mu, scale=sigma) # Normal
loss = -
torch.logsumexp(m.log_prob(y) + 
torch.log(alpha + 1e-15), dim=-
1)
return torch.mean(loss) # 
Average over dataset
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Log(y)

Claim Payments Distribution
Excluding Zeroes

Count



Tips and tricks for neural networks for 
claims data

u Initialisation strategy: Bias: Set to mean(log(y)) to converge faster, Weights: 
Use zeroes for final layer for stability (see FixUp Initialisation)

u Batch size – data is sparse so as high as possible (we used the full dataset)

u Optimiser – using AdamW

u Architecture: Neural networks are flexible and the structure can be varied to 
needs. 

u Hyperparameter search – find best model parameters for Neurons in hidden 
layer, lasso penalty, weight decay, dropout

u “Rolling origin” cross validation

u Claim history feature engineering
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Comparison
On Simulated Data
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Loss data

u Few examples of publicly available, 
detailed, real world data.

u Code for this presentation is fully 
available, so using simulated data. 

u Five datasets from using a simulated 
package, SPLICE. 

u Includes payments and reserves, but not 
exposures. 

u Different behaviour for large vs attritional 
claims.

• “Scenario 1: simple, homogeneous claims 
experience, with zero inflation.

• Scenario 2: slightly more complex than 1, with 
dependence of notification delay and 
settlement delay on claim size, and 2% p.a. 
base inflation.

• Scenario 3: steady increase in claim processing 
speed over occurrence periods (i.e. steady 
decline in settlement delays).

• Scenario 4: inflation shock at time 30 (from 0% 
to 10% p.a.).

• Scenario 5: default distributional models, with 
complex dependence structures (e.g. 
dependence of settlement delay on claim 
occurrence period).”

From https://github.com/agi-
lab/SPLICE/tree/main/datasets
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Results:
Dataset 5 Leaderboard
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Meth
od

Outstanding Claims 
Liability

Period Level MSE Period Level 
Absolute Error

Total OCL 
Absolute Error

Total OCL 
Absolute 
Percent Error

1 True Ultimate 415,208,224.0 0.0 0.0 0.0 0.0

7 D/O SplineNet 377,212,928.0 17,353,778.0 72,897,200.0 37,995,252.0 9.2

8 D/O SplineMDN 377,212,928.0 17,353,778.0 72,897,200.0 37,995,252.0 9.2

6 D/O ResNet 456,777,888.0 16,902,854.0 75,666,032.0 41,569,676.0 10.0

10 Detailed ResNet 478,930,661.1 41,708,402.1 157,432,251.7 63,722,452.3 15.3

11 Detailed SplineNet 483,915,060.2 42,700,794.0 161,107,670.6 68,706,851.4 16.5

12 Detailed SplineMDN 483,915,060.2 42,700,794.0 161,107,670.6 68,706,851.4 16.5

9 D/O SplineNet CV 548,784,064.0 31,238,146.0 146,933,376.0 133,575,840.0 32.2

2 Chain Ladder 553,335,232.0 43,015,804.0 174,280,848.0 138,127,024.0 33.3

3 GLM Chain Ladder 553,337,792.0 43,016,100.0 174,282,560.0 138,129,600.0 33.3

13 Detailed GBM 563,046,264.0 54,976,179.2 193,207,856.1 147,838,055.2 35.6

5 GLM Spline 565,708,352.0 35,842,056.0 164,710,784.0 150,500,096.0 36.2

4 GLM Individual 574,341,184.0 42,662,360.0 174,327,264.0 159,132,944.0 38.3

0 Paid to Date 0.0 102,023,488.0 415,208,224.0 415,208,224.0 100.0

NN’s do well for dataset 5: detailed features not 
leading to stronger predictions.



Customising the structure

u “SplineNet”, our customized design

u Using only occurrence and 
development periods only (but on 
individual data)

u Fits the development and 
occurrence trends across both train 
and test data
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Summary:

u Individual, granular models can be valuable in some 
circumstances

u Neural networks can effectively model trends in claims data:

u Reflect trends

u Potential to use detailed claims information

u Probabilistic output

u Link for full details: https://institute-and-faculty-of-
actuaries.github.io/mlr-
blog/post/research/chain_ladder_to_individual_mdn/
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