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Premium control problem for a mutual insurer

¢ Premium control problem in discrete time

e Non-life insurer
® Delays between accidents and payments

® Premium level affects whether the company attracts or
loses customers (feedback)
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Premium control problem for a mutual insurer

¢ Premium control problem in discrete time

e Non-life insurer
® Delays between accidents and payments

® Premium level affects whether the company attracts or
loses customers (feedback)

e Mutual insurer

e Aim: find a premium rule that generates a low, stable
premium, and a low probability of default
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Model of the insurance company

¢ |nsurance economics give surplus fund dynamics

Gip1 =G+ EPy + 1B 1 — OBy — 1G4y + RPyyy
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Model of the insurance company

¢ |nsurance economics give surplus fund dynamics

Git1 =Gy +EPyyq +1E 41 — O — IC41 + RPy

e Earned premium: EP1 = (P.N¢t1 + P—1Ny) /2
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Model of the insurance company

¢ |nsurance economics give surplus fund dynamics

Git1 =Gy +EPyyq +1E 41 — O — IC41 + RPy

e Earned premium: EP1 = (P.N¢t1 + P—1Ny) /2

¢ Define the state S; so that (S;) is Markovian given the
premium rule (policy) =, e.g.

St = (Gt,Ptfl, Nt, .. )

— Markov decision process (MDP)
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The control problem

T
minimise E, [nytf(Pt, St Spi1) | So = s,
t=0

where ~ is a discount factor.
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The control problem

T
minimise E, [nytf(Pt, St Spi1) | So = s,
t=0

where ~ is a discount factor.

c(Py), if Gi11 > Grin,

P, S, S = i
f( ty Ot t+1) {C(maX.A)(l + 77)7 if Gt+1 < Gmin,

® ¢ an increasing, strictly convex function = premiums
(P;) will be averaged

e T :=min{t: Gey1 < Gmin} = termination (default)
e n >0 = high cost in case of default
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Solving the control problem

¢ Explicit transition probabilities not available in a realistic
setting
= cannot use dynamic programming
— need to use reinforcement learning (e.g. SARSA)
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Solving the control problem

¢ Explicit transition probabilities not available in a realistic
setting
= cannot use dynamic programming
— need to use reinforcement learning (e.g. SARSA)

e State space too large in a realistic setting
— need to use function approximation

e SARSA learns from real or simulated experience
= need a lot of data!
— simulate data from a suitable stochastic environment
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SARSA with function approximation

e The action-value function
T
qﬂ'(S?a) = Eﬂ' [Zﬁt(—f(B,St,St_Fl)) ’ SO = S,P() = ai|
t=0

is approximated by a parameterised function ¢(s, a; 6)
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SARSA with function approximation

e The action-value function
T
r(s,a) == Ex [Z’Yt(—f(Pt,St»StH)) | So =5, = a}
t=0

is approximated by a parameterised function ¢(s, a; 6)

e Given a behaviour policy 7 that generates actions we can
sample (S, Ay, Riv1, Si1, Aey)

® Action A; (here premium F;)
®* Reward Rt+1 (here —f(Pt, St, St+1))
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SARSA with function approximation

e The action-value function
T
r(s,a) == Ex {Z’Yt(—f(Pt,St, St41)) | So =5, Py = a}
t=0

is approximated by a parameterised function ¢(s, a; 6)

e Given a behaviour policy 7 that generates actions we can
sample (S, Ay, Riv1, Si1, Aey)

® Action A; (here premium F;)
e Reward R;., (here —f(P;, S, Si11))

e |terative update for the weight vector
Orr1 = 0p + a1 (Regr +7G(Seq1, Aegr; 0¢) — (S, A 04))VG(Se, Ags 0;)
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lllustration - simple model

e N, fixed, finite state space, state S; = (G¢, P;—1)
e — can be solved by dynamic programming

Lina Palmborg, Stockholm University June 16, 2023 7/11



lllustration - simple model

¢ N, fixed, finite state space, state S; = (G, P,—1)
e — can be solved by dynamic programming

true optimal policy fraction of time in state
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Function approximation

Number of episodes: 10  (episode length = min{100, T'})
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Function approximation

Number of episodes: 100

more flexible less flexible
true optimal policy approximate policy approximate policy
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Function approximation

Number of episodes: 1000

more flexible less flexible
true optimal policy approximate policy approximate policy
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Function approximation

Number of episodes: 10 000

more flexible less flexible
true optimal policy approximate policy approximate policy
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Function approximation

Number of episodes: 50 000

more flexible less flexible
true optimal policy approximate policy approximate policy
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Function approximation

Number of episodes: 100 000

more flexible less flexible
true optimal policy approximate policy approximate policy
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Function approximation

Number of episodes: 300 000

more flexible less flexible
true optimal policy approximate policy approximate policy
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Function approximation

Number of episodes: 600 000

more flexible less flexible
true optimal policy approximate policy approximate policy
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Function approximation

Number of episodes: 1 000 000

more flexible less flexible
true optimal policy approximate policy approximate policy
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Behaviour policy

* Needs to both explore and exploit
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Behaviour policy

* Needs to both explore and exploit

1—g¢, if a = argmax §(s, a; 0),
® c-greedy policy: w(als) = € @
|_/4|7—17 otherwise.

Lina Palmborg, Stockholm University June 16, 2023

9/11



Behaviour policy

* Needs to both explore and exploit

1—g¢, if a = argmax §(s, a; 0),
® c-greedy policy: w(als) = € @
|_/4|7—17 otherwise.

exp{q(s,a;0)/7}

® Softmax policy: m(als) = S expld(s,a:0)/7]
(_IEA ) )
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Behaviour policy

¢ Needs to both explore and exploit
1—g¢, if a = argmax §(s, a; 0),
® c-greedy policy: w(als) = e @
|Al =17

* Softmax policy: m(a|s) = zeipizés{qcésoi/ g s

otherwise.

softmax behaviour policy
true optimal policy approximate policy
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Behaviour policy

¢ Needs to both explore and exploit
1—c¢, if a = argmax §(s, a; 0),
® c-greedy policy: w(als) = € otherwisea
A =17 '
. (s,a;0)/7}
® Softmax policy: = exp{g(s Aa
policy: m(als) Yacacxpid(s,a;0)/7}

softmax behaviour policy e-greedy behaviour policy
true optimal policy approximate policy approximate policy
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Realistic model

* In more realistic settings, we derive approximate optimal
premium rules that outperform several benchmark policies

e For more details on this, and the full design of the
reinforcement learning algorithm, see
L. Palmborg, F. Lindskog (2023), Premium control with
reinforcement learning. ASTIN Bulletin. Open access
https://doi.org/10.1017/asb.2023.13
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