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• Introduction: regression models
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Best-estimate premium

• For known data generating model, compute true best-estimate of a policyholder
with features x by

µ∗(x) := E [Y |x].

• For unknown data generating model, estimate µ∗ from a sample (Yi,xi)
n
i=1 that

has been generated by this unknown model. Solve

µ̂ = argmin
µ∈M

1

n

n∑
i=1

L (Yi, µ(xi)),

for a given model class M, and for a strictly consistent loss function L for mean
estimation; see Gneiting (2011).

• Popular model selection criteria:

? out-of-sample losses (under strictly consistent loss functions);
? auto-calibration and global balance property;
? conditional T -reliability diagrams and score decompositions.
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• Auto-calibration and isotonic recalibration
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Auto-calibration

• Literature on auto-calibration: Schervish (1989), Menon et al. (2012), Tsyplakov
(2013), Gneiting–Ranjan (2013), Pohle (2020), Gneiting–Resin (2022); Tasche
(2021), Krüger–Ziegel (2021); Denuit et al. (2021), Fissler et al. (2022),
W. (2023), Lindholm et al. (2023), W.–Ziegel (2023), . . .

Regression function x 7→ µ(x) is auto-calibrated for (Y,x) if, a.s.,

µ(x) = E [Y |µ(x)].

B This means that every price cohort µ(x) is on average self-financing,

or, in other words, there is no systematic cross-financing between different price
cohorts µ(x) 6= µ(x′) within the portfolio.

B Insurance price systems should generally fulfill this important property!
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Empirical testing for auto-calibration

• Binning (Hosmer–Lemeshow (1980) χ2-test, Lindholm et al. (2023)): Build
disjoint price intervals (bins) Ik = [ak, ak+1) and consider the average claim in
each bin ∑n

i=1 Yi 1{µ(xi)∈Ik}∑n
i=1 1{µ(xi)∈Ik}

??
≈

∑n
i=1 µ(xi)1{µ(xi)∈Ik}∑n

i=1 1{µ(xi)∈Ik}
.

• Local Regression (Loader (1999), Denuit et al. (2021)): Binning is a discretized
version of a local regression (or kernel smoother) that regresses the responses Y
from the price cohorts µ(x)

locfit(Y ∼ µ(x), alpha = 0.1, deg = 2).

• Both methods are sensitive to hyperparameter selection.
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Isotonic recalibration

• Isotonic regression is a non-parametric way to restore the auto-calibration property.

Isotonic regression solves the optimization problem (for positive weights wi)

m̂ = argmin
m=(m1,...,mn)>∈Rn

n∑
i=1

wi (Yi −mi)
2
,

subject to mk ≤ mj ⇐⇒ µ(xk) ≤ µ(xj).

• Isotonic regression preserves the ordering in µ(xi)
n
i=1. This requires that the first

regression function µ(·) provides (approximately) the correct ordering.

• Isotonic regression (Yi, m̂i)
n
i=1 = (Yi, m̂(xi))

n
i=1 is (empirically) auto-calibrated.
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Isotonic recalibration: step function
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• Isotonic regression: natural (optimal) binning without hyperparameter tuning.
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Isotonic regression and signal-to-noise ratio
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(left): high signal-to-noise ratio (right): low signal-to-noise ratio

• Theorem (W.–Ziegel, 2023). The expected number of steps in the isotonic (step)
regression function is increasing in the signal-to-noise ratio.

• Low signal-to-noise ratio: isotonic regression leads to low complexity partition of
the feature space ⇒ explainability.
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• Conclusions
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Concluding remarks

• Estimation should be based on strictly consistent loss functions; Gneiting (2011).

• Bregman divergences are the only strictly consistent loss functions for mean
estimation, Savage (1971) and Gneiting (2011).

• Any regression function should be auto-calibrated for insurance pricing.

• Isotonic recalibration restores the auto-calibration property (empirically).

• A low signal-to-noise ratio leads to a low complexity isotonic recalibrated functions.

• A low complexity partition of the feature space gives explainability.
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[8] Krüger, F., Ziegel, J.F. (2021). Generic conditions for forecast dominance. Journal of Business & Economics

Statistics 39/4, 972-983.

[9] Lindholm, M., Lindskog, F., Palmquist, J. (2023). Local bias adjustment, duration-weighted probabilities, and
automatic construction of tariff cells. Scandinavian Actuarial Journal, to appear.

[10] Loader, C. (1999). Local Regression and Likelihood. Springer.

[11] Menon, A.K., Jiang, X., Vembu, S., Elkan, C., Ohno-Machado, L. (2012). Predicting accurate probabilities with
ranking loss. ICML’12: Proceedings of the 29th International Conference on Machine Learning, 659-666.

[12] Murphy, A.H. (1973). A new vector partition of the probability score. Journal of Applied Meteorology 12/4, 595-600.

[13] Pohle, M.-O. (2020). The Murphy decomposition and the calibration-resolution principle: A new perspective on
forecast evaluation. arXiv:2005.01835.

12



[14] Savage, L.J. (1971). Elicitable of personal probabilities and expectations. Journal of the American Statistical
Association 66/336, 783-810.

[15] Schervish, M.J. (1989). A general method of comparing probability assessors. The Annals of Statistics 17/4,
1856-1879.

[16] Semenovich, D., Dolman, C. (2020). What makes a good forecast? Lessons from meteorology. 20/20 All-Actuaries

Virtual Summit, The Institute of Actuaries, Australia.

[17] Tasche, D. (2021). Calibrating sufficiently. Statistics: A Journal of Theoretical and Applied Statistics 55/6,
1356-1386.

[18] Tsyplakov, A. (2013). Evaluation of probabilistic forecasts: proper scoring rules and moments. SSRN Manuscript
ID 2236605.

[19] Wüthrich M.V. (2023). Model selection with Gini indices under auto-calibration. European Actuarial Journal 13/1,
469-477.
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