Transforming Compositional Data for Analysis Cause of Death Mortality Data

June 2023

Transforming Compositional Data for Analysis

Outline

- 1. Introduction and literature
- 2. How to forecast mortality using CODA?
- 3. Ways to transform compositional data for analysis

What is compositional data

- Non-negative data summing to a fixed constant
- Scale invariance: ratios between components of a composition are important, unaffected by the set of components chosen
- Sub-compositional coherence: relativities in subsets remain consistent

Mortality by cause as a composition

Consider death counts by age and cause as compositional, density of deaths subject to unit constraint.

Denote actual death counts as $D_{t,x,i}$, where t = year of death, x = age band per data, i = cause per data.

Cause-specific life table deaths:

$$d_{t,x,i} = \frac{D_{t,x,i}}{D_t}.$$

Denote the vector of compositional deaths as d_t , where each row is a composition of deaths by age and cause for year t.

Ways to analyse compositional data

- 1. Ignore the compositional constraint and apply standard multivariate statistical analysis: raw data analysis (RDA)
- Transform the compositional data using log-ratios, maintaining the properties of compositional data: log-ratio analysis (LRA)

Literature

- Cause-specific mortality forecast using life table deaths and density of deaths in a CODA framework¹
- Cause-specific mortality modelling joint and individual variation between causes²
- Not limited to understanding mortality by cause: subnational levels³, socio-economic groups⁴, multi-state life tables⁵

- ¹ Oeppen, 2008
- ² Kjaergaard et al., 2019
- ³ Bergeron-Boucher et al., 2017
- ⁴ Kjaergaard et al., 2020
- ⁵ Bergeron-Boucher et al., 2022

Transforming Compositional Data for Analysis

How to forecast mortality for compositional data?

- 1. Transform compositional data from constrained space (simplex) to the unconstrained space
- 2. Apply standard statistical techniques to forecast mortality.
- 3. Transform the estimated forecast deaths back to the compositional space

Today, we focus on step 1 (and 3).

Transformations

- Two log-ratio transformations:
 - Centred Log-Ratio
 - Isometric Log-Ratio
- Challenges with zeroes in compositional data
- Flexibility through α -transformation⁶

⁶ Tsagris et al., 2011

Transforming Compositional Data for Analysis

Centred Log-Ratio Transformation

$$\mathsf{CLR}(d_{t,x,i}) = w^0(d_{t,x,i}) = \ln \frac{d_{t,x,i}}{(\prod_{t,x,i} d_{t,x,i})^{1/XI}}; \qquad XI = 1, \dots, X.$$

For the compositional vector $\mathbf{d_t},$ let $\tilde{d_t}$ represent the centred vector. The CLR is:

$$\mathsf{CLR}(\mathbf{d}_{\mathbf{t}}) = w^0(\mathbf{d}_{\mathbf{t}}) = \ln(\tilde{\mathbf{d}}_{\mathbf{t}}).$$

Isometric Log-Ratio Transformation

Transforms compositional data to the Euclidean space without zero-sum constraint.

More complex than CLR: ILR is the log of geometric means of two subsets of parts.

ILR is equivalent to left multiplication of CLR by Helmert sub-matrix (\mathbf{H}) .

Still not able to work with zeroes in the data, but we have removed one constraint (zero-sum).

Isometric Log-Ratio Transformation

Denote the ILR of the compositional vector $\mathbf{d_t}$ as $z^0(\mathbf{d_t})$:

$$z^0(\mathbf{d_t}) = \mathbf{H}w^0(\mathbf{d_t}),$$

where $w^0(\mathbf{d_t})$ is the CLR transformation of the compositional vector $\mathbf{d_t}.$

Alpha Transformation

Flexibility depending on data: a Box-Cox transformation applied to the ratios of components, the selection of α determines the transformation.

Define the α -transformation as:

$$z^{\alpha}(\tilde{\mathbf{d}}_t) = \mathbf{H}w^{\alpha}(\tilde{\mathbf{d}}_t),$$

where $\tilde{\mathbf{d}}_t$ is the vector of centred death densities.

$$w^{\alpha}(\tilde{\mathbf{d}}_t) = \begin{cases} \ln(\tilde{\mathbf{d}}_t) & \alpha = 0\\ (XI) \times \frac{\tilde{\mathbf{d}}_t^{\alpha} - 1}{\alpha} & \alpha \neq 0. \end{cases}$$

Alpha Transformation

The α -transformation maps compositional data back to the real space.

It has neither the sum constraint, nor is constrained with zeroes in the data.

When there are not a lot of zeroes in the data, the optimal α converges to zero, and the transformation converges to the ILR.

Preliminary Results

Table 1: RMSE: LC, LC-LRA, LC- α

Model and Transformation	RMSE
LC	0.0090
LC CODA ($lpha=$ 0, LRA)	0.0059
LC CODA ($lpha=$ 0.1)	0.0216
LC CODA ($lpha=$ 0.5)	0.0199
LC CODA ($lpha=1$)	0.0198

Thank you

Email: zhe.michelle.dong@gmail.com