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Overview

� Expressive longevity modeling w/Gaussian Process models

� Compositional kernel search via Genetic Algorithms

� Proof of concept: synthetic datasets

� Results w/HMD datasets

� Take-aways about mortality surface structures

Joint with Jimmy Risk (Cal Poly Pomona)

Preprint: arxiv:2305.01728
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Mortality modeling

� A 2-D table indexed by Age and Year: x = (xnag , x
n
yr )

� Raw observed log-rates Y (xn) = f (xn) + ϵn

� Learn f (·) the latent log-mortality surface:

� Smooth observed mortality experience (remove ϵ(x))

� Uncover patterns in mortality evolution and mortality

improvement factors

� Quantify uncertainty (intrinsic; model-driven)

� Focus on interpretation rather than forecasting
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What are the factors driving mortality?

� Age-Period M1: f (x) = α(xag ) + β(xag )κ(xyr ) � Lee & Carter (1992)

� Then add a Cohort term (M3). Then add more terms...

� Dowd-Cairns-Blake (2020) CBDX: f (x) = α(xag ) +
∑I

i=1 βi (xag )κi (xyr ) + γ(xco) -

adaptive sum I ∈ {1, 2, 3} of Age-Period + �residual� Cohort term, κ is RW w/drift

� Hunt & Blake (2014): �general procedure� to pick an APC structure

� Gaussian Process Age-Period: f = GP(m, k) where k is multiplicative in xyr , xag �

L-Risk-Zail (2018)

� Huynh-L (2021): Age-Period-Cohort + multi-population;

� Neural network APC: Perla et al (2021); Richman & Wüthrich (2021)

� How to �exibly express f ?

4



Statistical Framework for Gaussian Process Mortality Surfaces

� Input x , true response surface f (x), observations y(x): training dataset D = (x1:n, y1:n)

� Specify prior distribution and then compute conditional distribution given the data

p(f |D) ∝ p(y |f )p(f ) = {likelihood} · {prior}
� Response surface is a Gaussian random �eld w/prior f ∼ GP(m, k)

� Covariance kernel k(x i , x j) = E[
(
f (x i )−m(x i )

) (
f (x j)−m(x j)

)
]

� Observation likelihood p(y |f ) = N (y |f ,∆), w/∆ = diag(σ2(x i )), ε(x i ) ∼ N (0, σ2(x i ))

� Gaussian prior + Gaussian likelihood ⇒ Gaussian posterior f |D ∼ GP(m∗, k∗)

� Posterior based on multivariate Gaussian conditioning f (x)|D ∼ N (m∗(x), s
2
∗(x))

mean: m∗(x) = k(x)T (K +∆)−1y︸ ︷︷ ︸
=:c

, Kij = k(x i , x j), ki = K (x , x i )

cov: s∗(x , x
′) = K (x , x ′)− k(x)T (K +∆)−1k(x ′)

� Fitting: learn the hyperparameters controlling the covariance structure
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Expressive GP Kernels



Kernel Families: Lots of Choices

� Kernel k determines all structural properties: (non)stationarity, smoothness of the GP

mean and sample paths

� Default choice is a multiplicative + separable. Ex: RBF Age-Period kernel (LRZ 2018)

k(x , x ′) = η2 exp

(
−
(xag − x ′

ag )
2

2ℓ2ag

)
· exp

(
−
(xyr − x ′

yr )
2

2ℓ2yr

)
= kRBF(xag , x

′
ag ) · kRBF(xyr , x ′

yr )

Kernel Name Abbv. Formula k(x , x ′; θ) Properties Kr

Matérn-1/2 M12 exp
(
− |x−x′|

ℓlen

)
, ℓlen > 0 C0 ✓

Matérn-3/2 M32
(
1+

√
3

ℓlen
|x − x ′|

)
exp

(
−

√
3

ℓlen
|x − x ′|

)
, ℓlen > 0 C1

Matérn-5/2 M52

(
1+

√
5

ℓlen
|x − x ′|+ 5

3ℓ2
len

|x − x ′|2
)
exp

(
−

√
5

ℓlen
|x − x ′|

)
C2 ✓

Cauchy Chy 1

1+|x−x′|2/ℓ2
len

, ℓlen > 0 C∞

Radial Basis RBF exp
(
− (x−x′)2

2ℓ2
len

)
, ℓlen > 0 C∞ ✓

AR2 AR2 exp(−α|x − x ′|)
{
cos(ω|x − x ′|) + α

ω
sin(ω|x − x ′|)

}
Periodic, C1

Linear Lin σ20 + x · x ′, σ0 > 0 Non-stationary *

Minimum Min t20 + x ∧ x ′, t0 > 0 Non-stat, C0 ✓

Mehler Meh exp
(
− ρ2(x2+x′2)−2ρxx′

2(1−ρ2)

)
, −1 ≤ ρ ≤ 1 Non-stationary
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Compositional Kernel Search

� Interested in recovering mortality dependence structure from data

� Cast a broad net to seek the �best� kernel

� Idea of �Automatic Model Construction with Gaussian Processes� (Duvenaud, 2015): look

at thousands of potential kernels

� Extract ∼ 100 best-�tting kernels for a given population and analyze this aggregate

collection:

� Smoothness of mortality experience across Age and across Year

� Presence/absence of a Cohort e�ect

� Additive structures (linking to multi-scale) vs classical multiplicative APC

� Relative structures across populations (how does discovered structure vary; which countries

have more "complex" mortality patterns)

� Analogue of the �general procedure� in APC frameworks
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Searching Through Kernels

� Space of kernels has nice algebraic properties

� Kernels are stable under addition (k1 + k2) and multiplication (k1 · k2)
� Index kernels by Age ka; Period/Year ky and birth Cohort kc

� Consider about a dozen of common GP families, compose them through add & mult

� e.g κ = add(Exp_c, mul(RBF_a, add(Mat_y, RBF_c))) corresponds to

(kM52(xyr ) + kRBF (xc)) · kRBF (xag ) + kExp(xc)

� Kernel length: number of terms |κ| = 7 above: 4 base kernels + 3 operators

� Compare kernels via BIC (log marginal likelihood of data + complexity penalty)

BIC (k) = −ℓk(θ̂; y) +
|θ̂| log(n)

2

� Bayes Factor: BF(k1, k2) =
p(k1|y)
p(k2|y) ≈ exp

(
BIC(k2)− BIC(k1)

)
to assess signi�cance
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How to Search: Genetic Algorithm

� Represent kernels via a binary tree

� Mutation-selection to propagate the ��ttest� kernel-trees across generations

� Generation 0: Randomly select ng kernels

� Generation g :

� Sample �t parents from the g − 1 generation (based on BIC)

� Evolve them (mutate, crossover, replace operations) into a new o�spring

� Add o�spring to generation g

� Repeat for g = 1, 2, . . . ,G
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Mutation/Cross-over Operations

κ = add(mul(Mina,M12y ),M52c) ξ = mul(RBFa,M52y )
add

mul

Mina M12y

M52c mul

RBFa M52y

Mutation(κ, point) Mutation(κ, hoist) Mutation(ξ, subtree) Crossover(κ, ξ)

add

mul

RBFc M12y

M52c add

M12y M52c

mul

RBFa add

M12a Miny

add

mul

RBFa M12y

M52c

Figure 1: Representative compositional kernels and GA operations. Bolded red ellipses indicate the

node of κ (or ξ) that was chosen for mutation or crossover.
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GA Implementation

� Fit GPs using the GPyTorch library in Python

� Maximize ℓk(θ|y) via Adam SGD

� Standardize inputs into [0, 1]2

� Use ng = 200 kernels per generation and G = 20 generations (a total of 4000 candidates)

� Tends to converge after 10-12 generations

� Double tournament of size T = 7 to select ancestors

� Some customization regarding the relative probability of mutation operations and how to

initialize the zeroth generation

� Big potential challenge of GA: bloat (want kernel length ≤ 15 or so)

� Largely follow Luke & Panait (2006); Poli et al (2008); Sipper et al (2018)
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Results



Synthetic Experiments

� Can the GA recover the true structure?

� Can the GA detect additivity?

� Is the GA stable?

Three synthetic datasets (35 ages x 28 years) generated with a speci�ed GP K0

Exprmnt Ground Truth Kernel σ2(x) β0 βag

SYA 0.04 · RBFa(0.4) · RBFy (0.3) 0.001 -5.0 3.4

SYB 0.08 · RBFa(0.586) ·M12y (13.33) + 0.02 ·M52c (0.079) 0.0004 -5.568 2.974

SYC 0.0134 ·M52a(1.132) ·Miny (0.877) ·M12c (96.234)· 1.0783/Dx -3.165 3.380

·Mehc (0.8483)

Table 1: Description of synthetic data sets. Data is generated with prior mean m(x) = β0 + βag xag . SYA and SYB are

homoskedastic. In generating SYC's heteroskedastic noise, Dx comes from the JPN Female data.
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Synthetic Results

SYA-1 SYA-2

BIC B̂F(k,K0) Kernel BIC B̂F(k,K0) Kernel

-2034.23 1.0000*** RBFaRBFy -2066.93 1.1907*** M52a RBFy

-2034.04 0.8264*** M52a RBFy -2066.76 1.0000*** RBFyRBFa

-2031.82 0.0902* M52aM52y -2064.63 0.1216** M52aM52a RBFy

-2031.29 0.0526* M52a RBFa RBFy -2064.24 0.0801* M52a RBFa RBFy

-2031.09 0.0433* M52aM52a RBFy -2063.88 0.0561* M52aM52a RBFy

Table 2: Top �ve �ttest non-duplicate kernels for the �rst synthetic case study SYA. Bolded is K0 = RBFy RBFa, the

true kernel used in data generation. SYA-1 and -2 denote the realization trained on.

� GA �nds the true optimum for SYA (+2 plausible alternatives)

� Correctly identi�es the # of terms and the additive age × year + cohort structure for

SYB

� Correctly identi�es the # of terms and the multiplicative structure for SYC

� Closely recovers the ground truth GP hyperparameters

� Can fully distinguish relative smoothness in Age and Year

� Stable results across re-runs

�
Validates GA convergence 13



Application to HMD National Datasets

Human Mortality Database:

� Four representative datasets:

� di�erent pop'n size;

� di�erent demographics;

� both genders

� JPN Females and Males

� US Males; SWE Females

� Years 1990�2018 and ages 50�84 Predictions from the top 10 kernels in Kf for JPN

Females Age 65. We show the predictive mean and 90%

posterior interval from the top-10 kernels, as well as the

observed log-mortality rates (+) during 2014�2019.
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Illustration: Japan Females

Lowest BIC: k∗
JPN−FEM = 0.4638 ·M52a(1.11) ·

Chyy (1.95) ·M12y (62.42) ·M12c(117.11).

Japan Females during 1990-2018 and Ages 50-84

BIC B̂F Kernel

-2725.293 1 M52a(Chyy M12y )M12c
-2725.270 0.977† M52a(M52yM12y )M12c
-2725.221 0.931† M52a(M52y Miny )M12c
-2724.623 0.512† M52a(M52yM12y )Minc
-2724.510 0.457 M52a(M32yM12c )M12c

Above: �ttest non-duplicate kernels for HMD

Japanese Females over Kf . Bayes Factors B̂F are

relative to the best k∗
JPN−FEM and none are signi�-

cant. Daggered kernels also belong to Kr .

Top Right: Properties of top 100 kernels

Bottom Right: Frequency of di�erent kernels among

top 100 candidates

15



GA Results based on searching within the full set Kf

Range BIC BIC len addtv non- num num num rough rough rough

max min comps stat. age year coh age year coh

JPN Female

1-10 -2723.68 -2725.29 4.00 1.00 0% 1.00 1.80 1.20 0% 100% 100%

1-50 -2720.64 -2725.29 4.34 1.08 10% 1.12 1.90 1.32 0% 100% 100%

51-100 -2718.24 -2720.62 4.60 1.20 18% 1.12 2.20 1.28 0% 100% 100%

JPN Male

1-10 -2978.43 -2980.53 4.10 1.00 0% 1.00 1.60 1.50 0% 100% 100%

1-50 -2975.36 -2980.53 4.26 1.10 0% 1.06 1.70 1.50 18% 100% 100%

51-100 -2974.25 -2975.32 4.60 1.00 0% 1.04 2.14 1.42 64% 100% 100%

US Male

1-10 -3163.54 -3170.29 5.70 2.30 0% 1.50 1.50 2.70 100% 100% 100%

1-50 -3160.32 -3170.29 5.78 2.24 0% 1.40 1.54 2.84 100% 100% 100%

51-100 -3157.93 -3160.24 6.14 2.38 2% 1.46 1.72 2.96 100% 100% 98%

SWE Female

1-10 -1624.34 -1625.57 3.00 1.00 0% 1.00 1.00 1.00 0% 100% 0%

1-50 -1622.74 -1625.57 3.02 1.00 6% 1.00 1.24 0.78 0% 100% 14%

51-100 -1622.04 -1622.74 3.42 1.04 16% 1.10 1.38 0.94 0% 100% 6%
16



Discussion

� Additive vs Multiplicative Structure

� Generally, multiplicative APC is su�cient: �nd evidence for additivity only in US

� Often, the found kernel has several multiplicative terms in the same coordinate

� Interpret as (i) multi-scale e�ects; (ii) insu�cient �t with the selected base kernels

� When kernel is additive, one term tends to dominate. Interpret as primary e�ect +

correction/residual (à la boosted models)

� Kernel smoothness con�rms accepted folklore:

� Rough (non-di�erentiable) in Period and Cohort

� Smooth (at least twice-di�erentiable) in Age

� Potentially non-stationary (i.e. random-walk like) Period e�ect

� Roughness in Period is driven by environmental (vs idiosyncratic that is smoothed) noise

� Substitution e�ect: often observe multiple plausible (BIC-wise) alternatives:

� E.g M52/RBF /Chy are close substitutes

� Min and M12 also often substituted

� Alternates yield very similar predictions and log-likelihood

� E�ect ampli�ed as the search space is increased
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Cohort E�ect

� Overwhelming evidence for cohort e�ect in Japan

and US

� BIC di�erences of 6+ (Bayes factors of 100+)

� Clear deterioration of residual heatmaps if remove

Cohort

� Top panel: Japan Female w/out Cohort; bottom:

w/Cohort

� Less obvious cohort e�ect in Sweden (con�rming

prior discussion)
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Conclusion

No one-size-�ts-all:

� Mortality experiences are heterogeneous across populations

� Need expressive kernels for a proper �t

� GA + GP is a powerful, interpretable tool to discover structure

Whereto next:

� Multi-population analysis (Huynh & L, 2022, 2023)

� Noise modeling

� Bayesian model averaging

Thank You!
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Best Found Kernels

Pop'n/Search Set Npl Top Kernel

JPN Female Kr 90 0.464 ·M52a(1.1) · RBFy (1.33)M12y (62.51) ·M12c (118.06)

JPN Female Kf 95 0.4638 ·M52a(1.11) · Chyy (1.95)M12y (62.42) ·M12c (117.11)

JPN Male Kr 89 0.1491 ·M52a(0.95) · RBFy (1.15)M12y (26.24) ·M12c (24.90)

JPN Male Kf 112 0.2130 ·M52a(1.09) ·M12y (39.09) ·M32c (0.86)M12c (40.73)

US Male Kr 57 0.017 ·M12a(5.04) ·M52y (0.50)M12y (10.33) ·M52c (0.36)M12c (5.00)

US Male Kf 35 0.01 ·AR2a(1.12, 1.88) ·M12y (24.18) ·M32c (0.72) · [4.6211 ·M12c (13.49)+

0.01 ·M32a(0.02) ·M52c (0.1)]

SWE Female Kr 200+ 0.2527 · RBFa(0.52) ·M12y (73.74) · RBFc (0.62)

SWE Female Kf 200+ 0.2094 · Chya(1.05) ·M12y (67.27) ·Mehc (0.60)

Table 3: Best performing kernel in Kr and Kf for each of the 4 populations considered. Npl is the number of alternate

kernels that have a BIC within 6.802 of the top kernel and hence are judged �plausible� based on the BF criterion.

Stability check by re-estimating with a slightly larger dataset (+2 years, +2 age groups):

original D: 0.4651 ·M52a(1.11) ·M52y (1.80) ·M12y (62.79) ·M12c(117.65);

enlarged Drob: 0.4646 ·M52a(1.11) ·M52y (1.80) ·M12y (62.72) ·M12c(117.50).

21



Comparing Scenarios of Future Mortality

Figure 2: Predictions from the top 10 kernels in Kf for JPN Females Age 65. Left: predictive mean and 90% posterior

interval from the top-10 kernels. For comparison we also display (black plusses) the 5 observed log-mortality rates during

2014�2019. Right: 4 sample paths from 3 representative kernels.
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Which Kernels?

US Male JPN Male SWE Female

Figure 3: Frequency of appearance of di�erent kernels from Kf in US, SWE and JPN Male models.
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GA Convergence

Main run Re-run

Figure 4: Summary statistics of best kernels proposed by GA as a function of generation g .
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