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Expressive longevity modeling w/Gaussian Process models

Compositional kernel search via Genetic Algorithms

Proof of concept: synthetic datasets
Results w/HMD datasets

e Take-aways about mortality surface structures

Joint with Jimmy Risk (Cal Poly Pomona)
Preprint: arxiv:2305.01728




Mortality modeling

o A 2-D table indexed by Age and Year: x = (x4, x;,)
e Raw observed log-rates Y (x") = f(x") 4 €"

e Learn f(-) the latent log-mortality surface:

e Smooth observed mortality experience (remove €(x))

e Uncover patterns in mortality evolution and mortality
improvement factors

e Quantify uncertainty (intrinsic; model-driven)

e Focus on interpretation rather than forecasting
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What are the factors driving mortality?

o Age-Period M1: f(x) = a(xag) + B(Xag)r(xyr) — Lee & Carter (1992)

e Then add a Cohort term (M3). Then add more terms...

o Dowd-Cairns-Blake (2020) CBDX: f(x) = a(xag) + Zle Bi(Xag)Ki(Xyr) + V(Xco) -
adaptive sum /| € {1,2, 3} of Age-Period + “residual” Cohort term, x is RW w/drift

e Hunt & Blake (2014): “general procedure” to pick an APC structure

e Gaussian Process Age-Period: f = GP(m, k) where k is multiplicative in x,,, X,z —
L-Risk-Zail (2018)

e Huynh-L (2021): Age-Period-Cohort + multi-population;
e Neural network APC: Perla et al (2021); Richman & Wiithrich (2021)

e How to flexibly express f?




Statistical Framework for Gaussian Process Mortality Surfaces

e Input x, true response surface f(x), observations y(x): training dataset
e Specify prior distribution and then compute conditional distribution given the data
p(f|D) x p(y|f)p(f) = {likelihood} - { prior}
e Response surface is a Gaussian random field w/prior f ~ GP(m, k)
e Covariance kernel k(x',x') = E[(f(x") — m(x")) (f(x/) — m(x/))]
e Observation likelihood p(y|f) = N(y|f,A), w/A = diag(c?(x')), e(x’) ~ N(0,02(x"))
° prior + likelihood = posterior f|D ~ GP(m., ki)
e Posterior based on multivariate Gaussian conditioning f(x)|D ~ N (m.(x), s2(x))
mean: m,(x) = k(x)" (K + A)™ 1y, Ky = k(x',x'), ki = K(x,x")
N

=.c

cov: s,(x,x') = K(x,x") — k(x)T(K + A) " k(x')

e Fitting: learn the hyperparameters controlling the covariance structure



Expressive GP Kernels




Kernel Families: Lots of Choices

e Kernel k determines all structural properties: (non)stationarity, smoothness of the GP

mean and sample paths
e Default choice is a multiplicative + separable. Ex: RBF Age-Period kernel (LRZ 2018)

Xag — Xog )? Xyr — X0p)?
k(x,x") = 1* exp (—M) -exp (-%) = kreF (Xag, Xag) - krer(Xyr, X))

2
Kernel Name  Abbv. ‘ Formula k(x, x’; 0) Properties Kr
Matérn-1/2  MI12 | exp ( _ \le—xq), lion > 0 co v
Matérn-3/2 M32 (1 + ‘f |x — X \) exp (—ﬁ\x = ></|>7 len >0 G2
Matérn-5/2 M52 (1 + 21[ = x|+ 58I = x |2) exp ( 5 |x \) c? v
Cauchy Chy m; élen > 0 e
!
Radial Basis RBF | exp (—(Xz;; ) ) Oon > 0 c>® v
len
AR2  AR2 | exp(—alx — x'|) {cos(w|x — X|) + L sin(w|x — x'|)} Periodic, C*
Linear Lin o2 +x-x', 09>0 Non-stationary *
Minimum Min tg +xAx', tg>0 Non-stat, C° v
12 ’
Mehler ~ Meh | exp (—w#) , —1<p<1 Non-stationary




Compositional Kernel Search

e Interested in recovering mortality dependence structure from data
e Cast a broad net to seek the “best” kernel

e Idea of “Automatic Model Construction with Gaussian Processes” (Duvenaud, 2015): look
at thousands of potential kernels

e Extract ~ 100 best-fitting kernels for a given population and analyze this aggregate
collection:
e Smoothness of mortality experience across Age and across Year
e Presence/absence of a Cohort effect
e Additive structures (linking to multi-scale) vs classical multiplicative APC
e Relative structures across populations (how does discovered structure vary; which countries
have more "complex" mortality patterns)

e Analogue of the “general procedure” in APC frameworks




Searching Through Kernels

e Space of kernels has nice algebraic properties

e Kernels are stable under addition (ki + k») and multiplication (k; - ko)

e Index kernels by Age k,; Period/Year k, and birth Cohort k.

e Consider about a dozen of common GP families, compose them through add & mult

e eg xk =add(Exp_c, mul(RBF_a, add(Mat_y, RBF_c))) corresponds to

(kM52(Xyr) + kRBF(Xc)) : kRBF(Xag) ar kExp(Xc)
e Kernel length: number of terms |x| = 7 above: 4 base kernels + 3 operators

e Compare kernels via BIC (log marginal likelihood of data + complexity penalty)

BIC(K) = —£u(fiy) + 1P1E)

e Bayes Factor: BF(kq, ko) = g%tii; ~ exp (BIC(kz) — BIC(kl)) to assess significance




How to Search: Genetic Algorithm

Represent kernels via a binary tree

e [Mutation-selection to propagate the “fittest” kernel-trees across generations

Generation 0: Randomly select n, kernels

Generation g:
e Sample fit parents from the g — 1 generation (based on BIC)
e Evolve them (mutate, crossover, replace operations) into a new offspring
e Add offspring to generation g

Repeat for g =1,2,...,G




Mutation/Cross-over Operations

k = add(mul(Min,, M12,), M52,)

¢ = mul(RBF,, M52,)

G
@ G

Mutation(k,point) | Mutation(x,hoist)

@
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Figure 1: Representative compositional kernels and GA operations. Bolded red ellipses indicate the

node of x (or &) that was chosen for mutation or crossover.
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GA Implementation

e Fit GPs using the GPyTorch library in Python

e Maximize ¢, (0]y) via Adam SGD

e Standardize inputs into [0, 1]?

e Use ng = 200 kernels per generation and G = 20 generations (a total of 4000 candidates)
e Tends to converge after 10-12 generations

e Double tournament of size T =7 to select ancestors

e Some customization regarding the relative probability of mutation operations and how to
initialize the zeroth generation

e Big potential challenge of GA: bloat (want kernel length < 15 or so)
o Largely follow Luke & Panait (2006); Poli et al (2008); Sipper et al (2018)

11



Results




Synthetic Experiments

e Can the GA recover the true structure?
e Can the GA detect additivity?
e Is the GA stable?

Three synthetic datasets (35 ages x 28 years) generated with a specified GP Kj

Exprmnt ‘ Ground Truth Kernel ‘ a2 (x) Bo Bag
SYA | 0.04.RBF,(0.4) - RBF,(0.3) 0.001 50 34
SYB | 0.08- RBF.(0.586) - M12,(13.33) + 0.02 - M52.(0.079) | 0.0004 5568 2.974
SYC | 0.0134 - M52,(1.132) - Min, (0.877) - M12.(96.234)- 1.0783/D;  -3.165 3.380

- Meh,(0.8483)

Table 1: Description of synthetic data sets. Data is generated with prior mean m(x) = Bo + BagXag- SYA and SYB are
homoskedastic. In generating SYC's heteroskedastic noise, Dy comes from the JPN Female data.
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Synthetic Results

SYA-1 | SYA-2
BIC BF(k,Ko)  Kernel BIC BF(k,Ko) Kernel
-2034.23  1.0000*** RBF,RBF, -2066.93  1.1907*** M52, RBF,
-2034.04  0.8264%%* M52, RBF, -2066.76  1.0000*** RBF,RBF,
2031.82  0.0902* M52,M52, 2064.63  0.1216%* M52,M52, RBF,
-2031.29  0.0526* M52, RBF,RBF, | -2064.24  0.0801% M52, RBF, RBF,
-2031.09  0.0433* M52,M52, RBF, | -2063.88  0.0561% M52,M52, RBF,

Table 2: Top five fittest non-duplicate kernels for the first synthetic case study SYA. Bolded is Ko = RBF, RBF,, the
true kernel used in data generation. SYA-1 and -2 denote the realization trained on.

GA finds the true optimum for SYA (+2 plausible alternatives)

Correctly identifies the # of terms and the additive age x year + cohort structure for
SYB

e Correctly identifies the # of terms and the multiplicative structure for SYC

Closely recovers the ground truth GP hyperparameters
Can fully distinguish relative smoothness in Age and Year
Stable results across re-runs

° GA convergence 13



Application to HMD National Datasets

-5.30
-5.35
. L
Human Mortality Database: T -5.40
e Four representative datasets: % -5.45
o different pop'n size; E —5.50
e different demographics; 9 5551 -
e both genders ~ 560l .
e JPN Females and Males -5.65 |, , ‘ ‘ . ‘ =
2014 2016 2018 2020 2022 2024 2026
e US Males; SWE Females Calendar Year
e Years 1990-2018 and ages 50-84 Predictions from the top 10 kernels in Kr for JPN

Females Age 65. We show the predictive mean and 90%
posterior interval from the top-10 kernels, as well as the
observed log-mortality rates (+) during 2014-2019.
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lllustration: Japan Females

Lowest BIC: Kpy_ pey = 0.4638 - M52,(1.11) -
Chy, (1.95) - M12,(62.42) - M12(117.11).

Japan Females during 1990-2018 and Ages 50-84
BIC BF Kernel

-2725.293 1 M52,(Chy, M12,)M12,

-2725.270  0.9777  M52,(M52,M12,)M12,

-2725.221  0.9317  M52,(M52, Min,)M12,

-2724.623  0.5121  M52,(M52,M12,) Min,

-2724.510 0.457 M52,(M32,M12,)M12,

a
a

Above: fittest non-duplicate kernels for HMD
Japanese Females over Kr. Bayes Factors BF are
relative to the best kjpy_ren and none are signifi-
cant. Daggered kernels also belong to KC;.

Top Right: Properties of top 100 kernels

Bottom Right: Frequency of different kernels among
top 100 candidates

Kernel Length

7T@ O@CI®0 @ @O 60 @E@ €8

T YN ALY T ILE
2721 27
BIC

1l
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GA Results based on searching within the full set Kr

Range BIC BIC len addtv  non- num num num rough rough rough
max min comps  stat. age  year coh age year coh
JPN Female
1-10 -2723.68 -2725.29 4.00 1.00 0% 1.00 1.80 1.20 0% 100% 100%
1-50 -2720.64 -2725.29 4.34 1.08 10% 1.12 190 1.32 0% 100% 100%
51-100 -2718.24 -2720.62 4.60 120 18% 1.12 220 1.28 0% 100% 100%
JPN Male
1-10 -2978.43  -2980.53 4.10 1.00 0% 1.00 1.60 150 0% 100% 100%
1-50 -2975.36  -2980.53 4.26 1.10 0% 1.06 1.70 150 18% 100%  100%
51-100 -2974.25 -2975.32 4.60 1.00 0% 1.04 214 142 64% 100% 100%
US Male
1-10 -3163.54 -3170.29 5.70 2.30 0% 150 150 270 100% 100% 100%
1-50 -3160.32 -3170.29 5.78 2.24 0% 140 154 284 100% 100% 100%
51-100 -3157.93 -3160.24 6.14 2.38 2% 146 1.72 296 100% 100% 98%
SWE Female
1-10 -1624.34  -1625.57 3.00 1.00 0% 1.00 1.00 1.00 0% 100% 0%
1-50 -1622.74 -1625.57 3.02 1.00 6% 1.00 124 0.78 0% 100% 14%

51-100 -1622.04 -1622.74 3.42 1.04 16% 1.10 1.38 094 0% 100% 6%
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Discussion

e Additive vs Multiplicative Structure

Generally, multiplicative APC is sufficient: find evidence for additivity only in US

Often, the found kernel has several multiplicative terms in the same coordinate

Interpret as (i) multi-scale effects; (ii) insufficient fit with the selected base kernels

When kernel is additive, one term tends to dominate. Interpret as primary effect +
correction/residual (a la boosted models)

e Kernel smoothness confirms accepted folklore:

Rough (non-differentiable) in Period and Cohort
Smooth (at least twice-differentiable) in Age

e Potentially non-stationary (i.e. random-walk like) Period effect
e Roughness in Period is driven by environmental (vs idiosyncratic that is smoothed) noise
e Substitution effect: often observe multiple plausible (BIC-wise) alternatives:
E.g M52/ RBF / Chy are close substitutes
Min and M12 also often substituted
Alternates yield very similar predictions and log-likelihood

Effect amplified as the search space is increased

17



Cohort Effect

e Overwhelming evidence for cohort effect in Japan
and US

e BIC differences of 6+ (Bayes factors of 100+)

e (Clear deterioration of residual heatmaps if remove
Cohort

e Top panel: Japan Female w/out Cohort; bottom:
w/Cohort

e Less obvious cohort effect in Sweden (confirming
prior discussion)

Age

1995 2000 2005
Calendar Year

2010
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Conclusion

No one-size-fits-all:

e Mortality experiences are heterogeneous across populations
e Need expressive kernels for a proper fit

e GA + GP is a powerful, interpretable tool to discover structure
Whereto next:

e Multi-population analysis (Huynh & L, 2022, 2023)
e Noise modeling

e Bayesian model averaging

Thank You!
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Best Found Kernels

Pop'n/Search Set

N, Top Kernel

JPN Female K, 90  0.464 - M52,(1.1) - RBF,(1.33)M12,(62.51) - M12,(118.06)
JPN Female K¢ 95  0.4638 - M52,(1.11) - Chy, (1.95)M12,(62.42) - M12.(117.11)
JPN Male K, 89  0.1491 - M52,(0.95) - RBF,(1.15)M12,(26.24) - M12(24.90)
JPN Male K¢ | 112 0.2130 - M52,(1.09) - M12,(39.09) - M32(0.86)M12.(40.73)
US Male K, 57 0.017 - M12,(5.04) - M52, (0.50)M12,(10.33) - M52(0.36)M12,(5.00)
US Male K¢ 35  0.01-AR2,(1.12,1.88)- M12,(24.18) - M32.(0.72) - [4.6211 - M12(13.49) +
0.01 - M32,(0.02) - M52.(0.1)]
SWE Female K, | 200+  0.2527 - RBF,(0.52) - M12,(73.74) - RBF(0.62)
SWE Female K¢ | 200+  0.2094 - Chy,(1.05) - M12,(67.27) - Meh,(0.60)

Table 3: Best performing kernel in i, and K¢ for each of the 4 populations considered. N, is the number of alternate
kernels that have a BIC within 6.802 of the top kernel and hence are judged “plausible” based on the BF criterion.

Stability check by re-estimating with a slightly larger dataset (42 years, +2 age groups):

original D: 0.4651 - M52,(1.11) - M52,(1.80) - M12,(62.79) - M12(117.65);
enlarged Dyop: 0.4646 - M52,(1.11) - M52, (1.80) - M12,(62.72) - M12,(117.50).
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Comparing Scenarios of Future Mortality
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Figure 2: Predictions from the top 10 kernels in /Cr for JPN Females Age 65. Left: predictive mean and 90% posterior
interval from the top-10 kernels. For comparison we also display (black plusses) the 5 observed log-mortality rates during
2014-2019. Right: 4 sample paths from 3 representative kernels.
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Which Kernels?

US Male JPN Male SWE Female
Figure 3: Frequency of appearance of different kernels from Cr in US, SWE and JPN Male models.
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GA Convergence

-2680
= Best
— 99% (second best)
2600 — 97.5% (top 5)
— 95% (top 10)
90% (top 20)

-2700

BIC

2710
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Generation

Main run

BIC

-2680

-2690

-2700

2710

-2720

-2730

— Best
— 99% (second best)
— 97.5% (top 5)
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Figure 4: Summary statistics of best kernels proposed by GA as a function of generation g.
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