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What is fairness?

Unfair discrimination for ratemaking
“A rate is reasonable and not excessive, inadequate, or unfairly discriminatory if
it is an actuarially sound estimate of the expected value of all future costs
associated with an individual risk transfer.”

– Casualty Actuarial Society (1988)

The debate regarding the formal definition of fairness never really settled (Frezal
and Barry, 2020) , and the rise of machine learning and big data increases the
potential for harm due to unfairness (Embrechts and Wüthrich, 2022).
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Why should we care about fairness?

1 Regulatory framework
▶ “Financial institutions must ensure that the use of artificial intelligence systems

does not undermine fairness.” (Recommendation 9, Autorité des Marchés
Financiers, 2021)

2 Responsibility of the modeller
▶ “The statistician cannot evade the responsibility for understanding the process

he applies or recommends.” (Fisher, 1956)
▶ “A model’s blind spots reflect the judgments and priorities of its creators.”

(O’Neil, 2016)

3 Maintaining public trust
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Why causal inference and fairness?

The overall goals of causal inference and fairness in insurance are congruent:

Causal inference:
Estimate a target effect while
avoiding undesired bias
from irrelevant confounders.

Fairness in insurance:
Estimate a premium while
avoiding unfair bias from
prohibited confounders.
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How can causal inference be useful?

Causal inference offers a toolbox to deal with various types of biases

(Unfair
biases).

Causal inference offers a deeper understanding of relationships in a dataset
(True risk factors, Araiza Iturria et al., 2022).

Causal inference allows to answer questions that goes beyond the observable
dataset (“What would have been the premium, had there been no disparity?”).
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Important definitions

Table 1: Key Definitions

Notation Description Example
𝑋 Allowed variables Vehicle model
𝐷 Prohibited variables Ethnic origin
𝑌 Response variable Claim amount

𝑋

𝐷

𝑌
Figure 1: Typical directed
acyclic graph (DAG) of fairness
in insurance
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Discrimination-free formula

Recall the discrimination-free premium proposed by Lindholm et al. (2022) with the
real world measure ℙ :

𝜇𝐷𝐹 (𝑋) = ∫
𝑑

𝔼 [𝑌 |𝑋, 𝐷]dℙ (𝐷 = 𝑑) .
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Counterfactual for a discrimination-free premium

What is a counterfactual (or potential outcome)?

𝑌 is the response variable.

𝑌 𝑥 is the potential outcome, had 𝑋 been equal to 𝑥.

There is a relation between the discrimination-free formula and the expected
counterfactual (Araiza Iturria et al., 2022) :

𝔼 [𝑌 𝑥]

Causal assumpt.= 𝔼𝐷 {𝔼 [𝑌 |𝑋, 𝐷]} = 𝜇𝐷𝐹 (𝑋)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Discrimination-free formula
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Counterfactual for a discrimination-free premium : remark

What are those causal assumptions?

1 The prohibited attribute has to be a confounder.

2 Positivity, exchangeability and consistency must be
valid.

𝑋

𝐷

𝑌
Figure 2: Desired DAG to
satisfy assumptions
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Towards a propensity score weighting

We start again with the discrimination-free formula, focusing on the weighting term:

𝜇𝐷𝐹 (𝑋) = ∫
𝑑

𝔼 [𝑌 |𝑋, 𝐷 = 𝑑]dℙ(𝐷 = 𝑑).

Multiplying by a real fraction equal to 1, we obtain :

𝜇𝐼𝑃𝑊 (𝑋) = ∫
𝑑

𝔼 [𝑌 |𝑋, 𝐷 = 𝑑] dℙ (𝐷 = 𝑑|𝑋)
dℙ (𝐷 = 𝑑|𝑋)dℙ(𝐷 = 𝑑)

= ∫
𝑑

𝔼 [𝑌 dℙ(𝐷 = 𝑑)
dℙ (𝐷 = 𝑑|𝑋)∣𝑋, 𝐷 = 𝑑]dℙ (𝐷 = 𝑑|𝑋).

11/22



Causal Inference and Fairness in Insurance Pricing O. Côté

Reviewing the discrimination-free formula Inverse probability weighting Insurance Data Science Conference

Towards a propensity score weighting

We start again with the discrimination-free formula, focusing on the weighting term:

𝜇𝐷𝐹 (𝑋) = ∫
𝑑

𝔼 [𝑌 |𝑋, 𝐷 = 𝑑]dℙ(𝐷 = 𝑑).

Multiplying by a real fraction equal to 1, we obtain :

𝜇𝐼𝑃𝑊 (𝑋) = ∫
𝑑

𝔼 [𝑌 |𝑋, 𝐷 = 𝑑] dℙ (𝐷 = 𝑑|𝑋)
dℙ (𝐷 = 𝑑|𝑋)dℙ(𝐷 = 𝑑)

= ∫
𝑑

𝔼 [𝑌 dℙ(𝐷 = 𝑑)
dℙ (𝐷 = 𝑑|𝑋)∣𝑋, 𝐷 = 𝑑]dℙ (𝐷 = 𝑑|𝑋).

11/22



Causal Inference and Fairness in Insurance Pricing O. Côté

Reviewing the discrimination-free formula Inverse probability weighting Insurance Data Science Conference

Towards a propensity score weighting

We start again with the discrimination-free formula, focusing on the weighting term:

𝜇𝐷𝐹 (𝑋) = ∫
𝑑

𝔼 [𝑌 |𝑋, 𝐷 = 𝑑]dℙ(𝐷 = 𝑑).

Multiplying by a real fraction equal to 1, we obtain :

𝜇𝐼𝑃𝑊 (𝑋) = ∫
𝑑

𝔼 [𝑌 |𝑋, 𝐷 = 𝑑] dℙ (𝐷 = 𝑑|𝑋)
dℙ (𝐷 = 𝑑|𝑋)dℙ(𝐷 = 𝑑)

= ∫
𝑑

𝔼 [𝑌 dℙ(𝐷 = 𝑑)
dℙ (𝐷 = 𝑑|𝑋)∣𝑋, 𝐷 = 𝑑]dℙ (𝐷 = 𝑑|𝑋).

11/22



Causal Inference and Fairness in Insurance Pricing O. Côté

Reviewing the discrimination-free formula Inverse probability weighting Insurance Data Science Conference

Weights for fairness

We get a weight 𝑤 that introduces fairness in our discrimination-free formula :

𝜇𝐼𝑃𝑊 (𝑋) = 𝔼𝐷 {𝔼 [𝑌 dℙ(𝐷)
dℙ (𝐷|𝑋)∣𝑋, 𝐷]∣𝑋}

A variety of weights (see, e.g. Li and Li, 2019) and a variety of estimators (See Fong
et al., 2018, for non-parametric estimator) exist.
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Intuitive properties of weights

The weights have intuitive properties.

They do not distort variables on the
aggregate level :

𝔼 [𝑤] = 1
𝔼 [𝐷 ⋅ 𝑤] = 𝔼 [𝐷]
𝔼 [𝑋 ⋅ 𝑤] = 𝔼 [𝑋]
𝔼 [𝑌 ⋅ 𝑤] = 𝔼 [𝑌 ]

They attempt to remove the dependence
between 𝑋 and 𝐷 :

Cov (𝑋 ⋅ 𝑤, 𝐷) = 0

X

D

Y
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Example

For every profile 𝑖 :
𝑥𝑖 : Occupation (Nursing ou Mechanic )

𝑑𝑖 : Gender (Male or Female)

𝑒𝑖 : Exposure to risk (vehicle year)

𝑌𝑖 : Observed pure premium ($)

Table 2: Dataset of motor vehicle
claims

𝑖 𝑥𝑖 𝑑𝑖 𝑒𝑖 𝑌𝑖

1 F 95 50
2 M 5 200
3 F 10 75
4 M 90 250
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Weight calculation

We use formula mentioned previously for weights :

𝑤1 =
̂P(𝐷 = F)

̂P(𝐷 = F|𝑋 = )
=

( 95 + 10
200 )

( 95
95 + 5 )

≈ 0.5526

𝑤2 =
̂P(𝐷 = M)

̂P(𝐷 = M|𝑋 = )
=

( 90 + 5
200 )

( 5
95 + 5 )

= 9.5

𝑤3 =
̂P(𝐷 = F)

̂P(𝐷 = F|𝑋 = )
=

( 95 + 10
200 )

( 10
10 + 90 )

= 5.25

𝑤4 =
̂P(𝐷 = M)

̂P(𝐷 = M|𝑋 = )
=

( 90 + 5
200 )

( 90
10 + 90 )

≈ 0.5278

Table 3: Required information for
weight calculation

𝑖 𝑥𝑖 𝑑𝑖 𝑒𝑖 𝑤𝑖

1 F 95

0.5526

2 M 5

9.5

3 F 10

5.25

4 M 90

0.5278
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New exposure

Table 4: Dataset of motor vehicle claims

𝑖 𝑥𝑖 𝑑𝑖 𝑒𝑖 𝑤𝑖 𝑒∗
𝑖 𝑌𝑖

1 F 95 0.5526 52.5 50
2 M 5 9.5 47.5 200
3 F 10 5.25 52.5 75
4 M 90 0.5278 47.5 250

With
𝑒𝑖 ⋅ 𝑤𝑖 = 𝑒∗

𝑖
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Avoiding 𝐷 using different approaches

Table 5: Aggregated profiles using 𝑒

𝑥𝑗 𝑒𝑗 𝜇𝑈(𝑋) 𝜇𝐼𝑃𝑊 (𝑋)
(Unaware) (Inverse pribability weighting)

95 + 5 =

0.95 ⋅ 50 +
0.05 ⋅ 200 =

0.525 ⋅ 50 +
0.475 ⋅ 200 =

100

57.5 121.25

10 + 90 =

0.10 ⋅ 75+
0.90 ⋅ 250 =

0.525 ⋅ 75+
0.475 ⋅ 250 =

100

232.5 158.125
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Concluding on Causal Inference and Fairness in insurance pricing

The theoretical equivalence between the discrimination-free formula and causal
tools goes beyond that.

Causal inference proposes many strategies to remove biases from confounders
(Hernán and Robins, 2020; Moodie and Stephens, 2022):

Standardization (g-formula)

(Pope and Sydnor, 2011; Aseervatham et al., 2016;
Lindholm et al., 2022; Araiza Iturria et al., 2022)

Inverse probability weighting (IPW)

(Lindholm et al., 2023)

Matching (optimal transport)

(Charpentier et al., 2023; Lindholm et al., 2023).

There is still some work to apply causal inference with high-dimensional 𝑋 and 𝐷
(Li and Li, 2019).
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Thank you
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