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Methodology

Class Label Description

0 loading is 0, the application is accepted on standard terms

1 loading is 1 * 25% = 25%, the application is accepted with loading 25%

2 loading is 2 * 25% = 50%, the application is accepted with loading 50%

3 loading is 3 * 25% = 75%, the application is accepted with loading 75%

4 loading is 4 * 25% = 100%, the application is accepted with loading 100%
5 loading is 5 * 25% = 125%, the application is accepted with loading 125%
6 loading is 6 * 25% = 150%, the application is accepted with loading 150%
7 loading is 7 * 25% = 175%, the application is accepted with loading 175%
8 loading is 8 * 25% = 200%, the application is accepted with loading 200%
9 loading is 9 * 25% = 225%, the application is accepted with loading 225%
10 loading is 10 * 25% = 250%, the application is accepted with loading 250%
11 loading is 11 * 25% = 275%, the application is accepted with loading 275%
12 loading is 12 * 25% = 300%, the application is accepted with loading 300%
13 loading is 13 " 25% = 325%, the application is accepted with loading 325%
14 loading is 14 * 25% = 350%, the application is accepted with loading 350%
15 loading is 15 * 25% = 375%, the application is accepted with loading 375%
16 loading is 16 * 25% = 400%, the application is accepted with loading 400%
20 the application is accepted with loading greater than 400%
100  |declined applications

Table 1: Class labels and descriptions

Multiclass classification

Loading: an indication of
riskiness, not calculated
from a formula

>400%: grouped togetherin
one class



Model Performances

Model_Name Precision Train|Recall Train |F1 Score Train | Train Accuracy|Precision Test |Recall Test |F1 Score Test |Test Accuracy

XGBClassifier
BaggingClassifier
RandomForestClassifier
GradientBoostingClassifier
DecisionTreeClassifier

KNeighborsClassifier 0.501

AdaBoostClassifier 0.072 0.09 0.072 0.442 0.066 0.089 0.071 0.438
LogisticRegression 0.021 0.053 0.03 0.39 0.02 0.053 0.029 0.388
SvC 0.073 0.053 0.03 0.39 0.073 0.053 0.03 0.388
SGDClassifier 0.003 0.053 0.006 0.056 0.003 0.053 0.006 0.061

Table 2: Performances of all models



XGB: Model Performances By Class

Class Iabel| Class Description | Precision Test |Recall Test |Accuracy Test|Count Test| Precision Train | Recall Train | Accuracy Train| Count Train

0 Standard 0.853 855 0.997 0.996 0.996 3436
1 Loaded 25 0.821 0.696 0.696 46 0.996 0.996 0.996 235
2 Loaded 50 0.713 0.771 0.771 345 0.988 0.996 0.996 1370
3 Loaded 75 0.852 0.687 0.687 134 0.992 0.986 0.986 496
4 Loaded 100 0.741 0.76 0.76 200 0.997 0.994 0.994 870
5 loaded125 | 0953  0.788 0.788 52 0.995 0.986 0.986 216
6 Loaded 150 0.814 0.731 0.731 108 0.993 0.998 0.998 448
7 Loaded 175 0.833 0.667 0.667 15 0.987 0.987 78
8 Loaded 200 0.794 0.617 0.617 81 0.996 0.996 279
9 loaded 225 [ 0.75 0.75 8 26
10 Loaded 250 0.821 0.667 0.667 69 252
11 loaded275 [0 1 0.909 0.909 11 28
12 Loaded 300 0.711 0.73 0.73 37 177
13 Loaded 325 2 3
14 Loaded 350 0.818 0.6 0.6 15 54
15 Loaded 375 1
16 Loaded 400 0.864 0.76 0.76 93
20 Loaded 400+ 0.773 0.895 0.895 122
100 Decline 0.819 0.716 0.716 637
Overall  All Classes 0.799 0.72 0.811 8821
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Prediction probabilities
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Figure 1: Methodology flowchart

SHAP

SHapley Additive exPlanations
Game theory

Add features sequentially
Consider all combinations

SHAP value = weighted average
Model agonistic

More stable than model-
dependent feature ranking
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HAP Feature Ranking
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SHAP: Single Instance
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Conclusion

Accuracy: 99.5% on fraining set and 81.1% on test set

Accuracy by each class indicates the model is rather accuracy at predicting

standard class, i.e. accuracy 93.8% on test set

Majority of incorrect predictions are small differences in predicted loadings as

opposed incorrect bucket (55 cases, 2.5% of testing dataset)

XAl explain model outputs

XAl provide underwriting insights

XAl highlights some data issues, human errors and inconsistencies

Post-modelling analysis, data collection and improvement, discussion with

underwriters could further improve model performances
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ITs NOTHING PERSONAL

TERMINATOR 2
JUDGMENT DAY

TO HELP, NOT TO KILL
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