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Mortality Forecasting

Mortality is declining in most of developed countries;

several mortality models have been proposed: Lee and Carter (1992),

Ranshaw and Haberman (2006), Cairns, Blake and Dowd (2006), Plat

(2009).
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Figure: Italian mortality data (source: Human Mortality Database).
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Neural Networks and Mortality Forecasting

Deep Neural Networks (DNN) have been successfully applied to different
tasks in actuarial science, including mortality modelling and forecasting.
Several architectures have been investigated:

▶ Fully Connected Networks: Hainaut (2019), Richman and Wüthrich
(2021):

▶ Recurrent Networks: Nigri et al. (2019), Perla et al. (2021), Lindholm
and Palmborg (2022);

▶ 1D Convolutional Networks: Perla et al. (2021), Scognamiglio (2022);
▶ 2D Convolutional Networks: Wang et al. (2021), Schnurch and Korn

(2022).

Due to the complex structure of networks, it is difficult to determine the

impact of inputs on the predictions.

Can we benefit from the predictive accuracy of DNN while maintaining an

explainable model structure?
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(2021):

▶ Recurrent Networks: Nigri et al. (2019), Perla et al. (2021), Lindholm
and Palmborg (2022);

▶ 1D Convolutional Networks: Perla et al. (2021), Scognamiglio (2022);
▶ 2D Convolutional Networks: Wang et al. (2021), Schnurch and Korn

(2022).

Due to the complex structure of networks, it is difficult to determine the

impact of inputs on the predictions.

Can we benefit from the predictive accuracy of DNN while maintaining an

explainable model structure?

S. Scognamiglio 15-16 June 2023 3 / 17



Introduction

localGLMnet

Numerical

Experiments

Neural Networks

Let x ∈ Rq0 be the vector of features, a fully connected (FC) layer of size

q1 ∈ N is a function

z : Rq0 → Rq1 , x 7→ z(x) = (z1(x), z2(x), . . . , zq1(x))
⊤ .

Each component zj(x) is a non-linear function of x

x 7→ zj(x) = ϕ

(
wj,0 +

q0∑
l=1

wj,lxl

)
= ϕ (wj,0 + ⟨w j , x⟩) , j = 1, . . . , q1,

where ϕ : R → R is the activation function, wj,l ∈ R represent the network

parameters and ⟨·, ·⟩ denotes the scalar product in Rq0 .

x

wj,l

z
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Neural Networks

Deep neural networks compose multiple layers. For d layers of size

q = {qk}1≤k≤d ∈ Nd , the mapping reads:

x 7→ z (d :1)(x) def
=

(
z (d) ◦ · · · ◦ z (1)

)
(x) ∈ Rqd ,

where z (k) : Rqk−1 → Rqk . In the case of univariate response variable, the

output of the network is:

x 7→ µW (x) def
= ΨFFN

W (x) def
= g−1

(
w

(d+1)
0 +

qd∑
l=1

w
(d+1)
l z

(d :1)
l (x)

)
,

g−1(·) is an inverse link function.

x

w
(1)
j,l w

(2)
j,l w

(d)
j,l

w
(d+1)
l

z(1) z(2) z(d−1) z(d)

ΨFFN
W (x)

. . .

. . .

. . .
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Neural Networks

The training of the NN induces the following optimisation:

argmin
W

L(y ,ΨFFN
W (x)),

where

L(·) is the chosen loss function;

W is the vector of the neural network parameters.

x

w
(1)
j,l w

(2)
j,l w

(d)
j,l

w
(d+1)
l

z(1) z(2) z(d−1) z(d)

. . .

. . .

. . .

ΨFFN
W (x)
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The localGLMnet model of Richman and Wüthrich (2023)

Let ΨW be a neural network with output dimension equal to the input

dimension q0:

ΨW : Rq0 → Rq0 , x 7→ ΨW (x),

having network weights W . The LocalGLMnet regression function is defined

by

x 7→ µW ,β0(x)
def
= g−1

(
β0 + β(x)⊤x

)
,

where g : R → R is the link function, β0 ∈ R, and β(x) = ΨW (x).

(1) If βj(x) ≡ βj is not feature dependent.

(2) If βj(x) ≡ 0, term βj(x)xj is dropped altogether.

(3) If βj(x) = βj(xj), term βj(xj)xj does not interact with any other terms

xj′ , j
′ ̸= j .

(4) Interactions can be studied by considering the gradient of βj(x)

∇βj(x) =
(
∂x1βj(x), . . . , ∂xq0

βj(x)
)⊤ ∈ Rq0 .
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A multi-output extension of localGLMnet model

Let X ∈ Rp×q be the matrix of input data, and ΨW be a neural network with

output dimension equal to the input dimension Rp×q:

ΨW : Rp×q → Rp×q, X 7→ ΨW (X ),

having network weights W . The multi-output LocalGLMnet regression

function is defined by

X 7→ µW ,β0
(X )

def
= g−1

(
β0 + 1⊤

p [B(X )⊙ X ]
)

∈ Rq,

where ⊙ is the Hadamard product, 1p = (1, . . . , 1)⊤ ∈ Rp, g−1 : R → R is

applied in an element-wise manner, β0 ∈ Rq is a vector of bias terms, and

where we set regression attention matrix B(X ) = ΨW (X ).
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A multi-output localGLMnet model for mortality forecasting

Let X = {x ∈ N0 : 0 ≤ x ≤ ω} be the set of ages considered.

We denote:

m(i)
t+1 ∈ Rω+1 the vector mortality rates of a population i in year t + 1;

M
(i)
t−τ,t ∈ R(τ+1)×(ω+1) the matrix of the mortality rates for all ages in

the τ + 1 past years.

We desire to learn the mapping

f : R(τ+1)×(ω+1) → Rω+1 M
(i)
t−τ,t 7→ m̂(i)

t+1 = f
(
M

(i)
t−τ,t

)
.
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A multi-output localGLMnet model for mortality forecasting

Applying the multi-output localGLM regression function:

M
(i)
t−τ,t 7→ µW ,β0

(M
(i)
t−τ,t)

def
= g−1

(
β0 + 1⊤

p

[
B(M

(i)
t−τ,t)⊙M

(i)
t−τ,t

])
∈ Rω+1,

where β0 ∈ Rω+1 and B(M
(i)
t−τ,t) ∈ R(τ+1)×(ω+1). Rewriting the model for a

single age:

m̂
(i)
j,t+1 =

(
µW ,β0

(M
(i)
t−τ,t)

)
j
= g−1

(
β0,j + βj(M

(i)
t−τ,t)

⊤m(i)
(t−τ,t),j

)
.

It can be rearranged as:

g
(
m̂

(i)
j,t+1

)
= β0,j +

τ∑
s=0

βs,j(M
(i)
t−τ,t)m

(i)
j,t−s ,

that is AR(τ + 1), with varying coefficients derived from M
(i)
t−τ,t .

S. Scognamiglio 15-16 June 2023 10 / 17



Introduction

localGLMnet

Numerical

Experiments

How do we derive B(M
(i)
t−τ,t)?

We derive the attention coefficients B(M
(i)
t−τ,t) by applying a 2D locally

connected layer to the matrix M
(i)
t−τ,t .

zero padding

where W(s,x) ∈ Rd1×d2 for s = 0, 2, . . . , τ, x = 0, 1, . . . , ω are weight matrices.
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Applying the localGLMnet: Human Mortality Database

Data Source: Human Mortality Database:
▶ Ages X = {x ∈ N0 : 0 ≤ x < 100};
▶ Years T = {t ∈ N : 1950 ≤ t ≤ 2016};
▶ Populations |I| = 76.

Data Partitioning:
▶ Learning data Tlearn = {t ∈ N : 1950 ≤ t ≤ 1999};
▶ Test data Ttest = {t ∈ N : 2000 ≤ t ≤ 2016}.

The networks are trained by minimising:

argmin
W

L(W ) = argmin
W

∑
i

∑
x

∑
t

(
m

(i)
x,t − m̂

(i)
x,t

)2
.

where W denote the vector of network parameters.
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The attention coefficients βs,x(M
(i)
t−τ,t)
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Forecasting Accuracy

model forecasting MSE # parameters

LC 5.4659 18.698

LCCONV1 2.2936 (0.0282) 26.996

LocalGLMnet 2.1985 (0.0149) 26.000

Table: Average and standard deviation of the out-of-sample forecasting MSEs and
number of trainable parameters of the LC, LCCONV, LocalGLMnet and models; the
MSEs are multiplied by 104.

1Perla, F., Richman, R., Scognamiglio, S., & Wüthrich, M. V. (2021). Time-series forecasting
of mortality rates using deep learning. Scandinavian Actuarial Journal, 2021(7), 572-598.
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United States Mortality Database

Data Source: United States Mortality Database:
▶ Ages X = {x ∈ N0 : 0 ≤ x < 100};
▶ Years T = {t ∈ N : 1959 ≤ t ≤ 2017};
▶ Populations |I| = 102.

Data Partitioning:
▶ Learning data Tlearn = {t ∈ N : 1959 ≤ t ≤ 1999};
▶ Test data Ttest = {t ∈ N : 2000 ≤ t ≤ 2017}.

We test three localGLMnet models:

LocalGLMnet HMD trained on the HMD data;

LocalGLMnet transfer trained on HMD data and the weights are

further fine-tuned on the USMD data;

LocalGLMnet USMD directly trained on the USMD data.
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Forecasting Accuracy on USMD data

model forecasting MSE # pssarameters

LC 1.1848 24.684

LCCONV 0.4938 (0.0268) 27.061

LocalGLMnet HMD 0.4075 (0.0102) 26.000

LocalGLMnet transfer 0.2986 (0.0039) 26.000

LocalGLMnet USMD 0.3134 (0.0100) 26.000

Table: Average and standard deviation of the forecasting MSEs and number of
trainable parameters of the LC, LCCONV, LocalGLMnet HMD,
LocalGLMnet transfer and LocalGLMnet USMD models; the MSEs are multiplied by
104.
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Conclusions

The LocalGLMnet model proposed by Richman and Wüthrich (2023)

can be adapted to the time series forecasting task;

accurate forecasts can be obtained without losing model explainability;

transfer learning mechanisms can further improve forecasting accuracy.

For comments or suggestions:

salvatore.scognamiglio@uniparthenope.it
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