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Risk evaluation

o Evaluation of heavy tailed distributions is a crucial part of risk
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Risk evaluation

o Evaluation of heavy tailed distributions is a crucial part of risk
assessment.

@ When datasets present long conditional tails on their response
variables, algorithms based on Quantile Regression have been widely
used to assess extreme quantile behaviors.
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Value at Risk (VaR) and Conditional Tail
Expectation (CTE)

VaRy(Y) = inf{y € R|Fy(y) > q} = F, (1 - q)

where Fy is the distribution function of the random continuous variable Y.
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VaRy(Y) = inf{y € R|Fy(y) > g} = F,* (1 — q)

where Fy is the distribution function of the random continuous variable Y.

CTE4(Y) =E[Y|Y > VaRy(Y)]
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Elicitability of CTE

@ The definition of elicitability can be reduced into the existence of a
scoring function that is strictly consistent (Gneiting (2011)).
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Elicitability of CTE

@ The definition of elicitability can be reduced into the existence of a
scoring function that is strictly consistent (Gneiting (2011)).

@ Acerbi and Szekely (2014) found a consistent scoring function but did
not opened the discussion of elicitability. Afterwards, Fissler and
Ziegel (2016) prove that CTE alone it is not elicitable, but the
pair (VaR, CTE) is.
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Scoring functions

Scoring Function - VaR (Koenker and Bassett Jr (1978))

pq(r1,Y) = (q - ]l{y—r1<0})(y - rl)
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Scoring functions

Scoring Function - VaR (Koenker and Bassett Jr (1978))

pq(rl,}/) = (CI - ]l{y—r1<0})(y - rl)

v

Scoring Function - CTE (Fissler and Ziegel (2016))

Sq(rlv r27y) = ]l{y>r1}( - Gl(rl) + Gl(y) - GZ(rZ)(rl - y))+
(1—q)(Gi(n) — Go(r2)(r2 — 1) + Ga(r2))

with G; being an increasing function, G an increasing and concave
function and G} = G,
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@ Acerbi and Szekely (2014) realized a non-crossing problem between
the VaR and the CTE
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Non-crossing algorithms 1

@ Acerbi and Szekely (2014) realized a non-crossing problem between
the VaR and the CTE, namely VaRq(y;) < CTEq(yi).

e But what about several quantile levels?
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Non-crossing algorithms 2

@ The problem of crossing quantiles’ line of research was created by He
(1997) and Yu et al. (2003)
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Non-crossing algorithms 2

@ The problem of crossing quantiles’ line of research was created by He
(1997) and Yu et al. (2003), namely VaRg,(yi) < VaRg, (yi)

@ Recent advances use neural networks (see Cannon (2018) and Moon
et al. (2021))

e Vidal-Llana et al. (2022) presented an approach to a multiple quantile
levels for VaR and CTE estimation with non-crossing conditions
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between a VaR and its CTE under a telematics context
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Objective

@ Showcase the problematic of crossing quantiles across VaRs and
between a VaR and its CTE under a telematics context

@ Compare a classical approach to several quantile levels against a
methodology that assures non-crossing conditions
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Dataset
°

Telematic information from year 2015 of 9,614 drivers from a Spanish in-
surance company
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Crossing example

Two Step NCDNN

Driver expected distribution
Driver expected distribution
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Crossings on a Two Step approach

gi - Gi+1 ‘ 0.9-0.925 0.925-0.95 0.95-0-975 0.975-0.99
VaR,, > VaR, 3 (0%) 1(0%) 2 (0%) 2 (0%)

i+1
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Crossings on a Two Step approach

Gi - Qi1 | 09-0.925 0.925-0.95 0.95-0-975 0.975 - 0.99
VaRy, > VaR,,., 3 (0%) 1(0%) 2 (0%) 2 (0%)
CTE, > CTE,,, 0(0%) 541 (6%) 1560 (16%) 176 (2%)
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Murphy Diagrams: CTE comparison
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improvement

CTE loss difference by changing from QR+CTE to NCDNN
']
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Quantile levels
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@ Inside an insurance company pricing scheme, crossing predictions
become unfeasible estimations, thus the usefulness of non-crossing
algorithms
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Conclusions
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Conclusions

@ Inside an insurance company pricing scheme, crossing predictions
become unfeasible estimations, thus the usefulness of non-crossing
algorithms

@ For financial practitioners, and after Basel Ill recommendations,
non-crossing predictions help assess bank reserves in a more
consistent way
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Additional results II
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GitHub Repository

O Search or jump to. Pull requests Issues Codespaces Marketplace Explore
Unwateh 1~
Issues Pull requests Actions Projects Wiki Security Insights Settings
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Juan José Vidal Liana and Juan José Vidal Llana Modify README to add acknowled 2
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main.py

README.md
Packages

Non-Crossing Dual Neural Network

This is a repository in regards of the article "Non-Crossing Dual Neural Network: Joint Value at Risk and
Conditional Tail Expectation estimations with Non-Crossing Conditions"

GitHub NCDNN Repository
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https://github.com/JuanJoseVidal/ncdnn
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