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Risk evaluation

Evaluation of heavy tailed distributions is a crucial part of risk
assessment.

When datasets present long conditional tails on their response
variables, algorithms based on Quantile Regression have been widely
used to assess extreme quantile behaviors.
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Value at Risk (VaR) and Conditional Tail
Expectation (CTE)

Definition

VaRq(Y ) = inf{y ∈ R|FY (y) > q} = F−1Y (1− q)

where FY is the distribution function of the random continuous variable Y .

Definition

CTEq(Y ) = E[Y |Y ≥ VaRq(Y )]
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Elicitability of CTE

The definition of elicitability can be reduced into the existence of a
scoring function that is strictly consistent (Gneiting (2011)).

Acerbi and Szekely (2014) found a consistent scoring function but did
not opened the discussion of elicitability. Afterwards, Fissler and
Ziegel (2016) prove that CTE alone it is not elicitable, but the
pair (VaR, CTE) is.

NCDNN on telematics Vidal-Llana, X. and Guillén, M. 6 / 23



Motivation Dataset Results Conclusions Appendix References

Elicitability of CTE

The definition of elicitability can be reduced into the existence of a
scoring function that is strictly consistent (Gneiting (2011)).

Acerbi and Szekely (2014) found a consistent scoring function but did
not opened the discussion of elicitability.

Afterwards, Fissler and
Ziegel (2016) prove that CTE alone it is not elicitable, but the
pair (VaR, CTE) is.

NCDNN on telematics Vidal-Llana, X. and Guillén, M. 6 / 23



Motivation Dataset Results Conclusions Appendix References

Elicitability of CTE

The definition of elicitability can be reduced into the existence of a
scoring function that is strictly consistent (Gneiting (2011)).

Acerbi and Szekely (2014) found a consistent scoring function but did
not opened the discussion of elicitability. Afterwards, Fissler and
Ziegel (2016) prove that CTE alone it is not elicitable, but the
pair (VaR, CTE) is.

NCDNN on telematics Vidal-Llana, X. and Guillén, M. 6 / 23



Motivation Dataset Results Conclusions Appendix References

Scoring functions

Scoring Function - VaR (Koenker and Bassett Jr (1978))

ρq(r1, y) = (q − 1{y−r1<0})(y − r1)

Scoring Function - CTE (Fissler and Ziegel (2016))

Sq(r1, r2, y) = 1{y>r1}
(
− G1(r1) + G1(y)− G2(r2)(r1 − y)

)
+

(1− q)
(
G1(r1)− G2(r2)(r2 − r1) + G2(r2)

)
with G1 being an increasing function, G2 an increasing and concave
function and G′2 = G2
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Non-crossing algorithms 1

Acerbi and Szekely (2014) realized a non-crossing problem between
the VaR and the CTE

, namely VaRq(yi) ≤ CTEq(yi).

But what about several quantile levels?
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Non-crossing algorithms 2

The problem of crossing quantiles’ line of research was created by He
(1997) and Yu et al. (2003)

, namely VaRq0(yi) ≤ VaRq1(yi)

Recent advances use neural networks (see Cannon (2018) and Moon
et al. (2021))

Vidal-Llana et al. (2022) presented an approach to a multiple quantile
levels for VaR and CTE estimation with non-crossing conditions
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Objective

Showcase the problematic of crossing quantiles across VaRs and
between a VaR and its CTE under a telematics context

Compare a classical approach to several quantile levels against a
methodology that assures non-crossing conditions
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Dataset

Telematic information from year 2015 of 9,614 drivers from a Spanish in-
surance company
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Crossing example

Two Step NCDNN
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Crossings on a Two Step approach

qi - qi+1 0.9 - 0.925 0.925 - 0.95 0.95 - 0-975 0.975 - 0.99

VaRqi > VaRqi+1 3 (0%) 1 (0%) 2 (0%) 2 (0%)
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qi - qi+1 0.9 - 0.925 0.925 - 0.95 0.95 - 0-975 0.975 - 0.99

VaRqi > VaRqi+1 3 (0%) 1 (0%) 2 (0%) 2 (0%)
CTEqi > CTEqi+1 0 (0%) 541 (6%) 1,560 (16%) 176 (2%)
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Murphy Diagrams: CTE comparison
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Loss improvement
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Conclusions

Inside an insurance company pricing scheme, crossing predictions
become unfeasible estimations, thus the usefulness of non-crossing
algorithms

For financial practitioners, and after Basel III recommendations,
non-crossing predictions help assess bank reserves in a more
consistent way
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Additional results I
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Additional results II
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GitHub Repository

GitHub NCDNN Repository
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https://github.com/JuanJoseVidal/ncdnn
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Thank you! Any questions?
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