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Motivation

Insurance claim datasets usually contain a high percentage of zero claims.
Imbalance problem:

Majority (zero claims), minority (non-zero large claims).
Standard algorithms fail to properly depict data characteristics and therefore yield poor
prediction accuracy.
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Imbalanced learning techniques

Resampling: rebalance the sample space.
Over-sampling: adding more samples from the minority, e.g., SMOTE (Chawla et al., 2002).
Under-sampling: removing samples from the majority.

Ensemble methods: combine weak learners to improve prediction ability.
Parallel-based ensembles: bagging.
Iterative-based ensembles: boosting, e.g., Adaboost (Freund and Schapire, 1996), TDboost (Yang
et al., 2018).

Cost-sensitive learning: assign di�erent costs for di�erent prediction errors.
In the real world, di�erent misclassi�cations often have various interpretations.
Cost-sensitive learning modi�es the cost of misclassi�cation by adding penalties to misclassi�ed
predictions related to the objects of interest.
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Inspiration from cost-sensitive learning

We borrow the idea of cost-sensitive learning to modify the loss function of CART, making it more
suitable for imbalanced datasets.

Assign di�erent weights to zero and non-zero prediction errors,
Inject the “classi�cation” of zero and non-zero claims into our regression model.

We chose to modify a single tree for the following considerations:
Compared with resampling techniques, cost-sensitive learning preserves the original
distribution of the dataset.
Compared to ensemble techniques, a single tree maintains its advantage of interpretability,
and the modi�ed single tree can also be used as a base learner in ensemble techniques.
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Motivating example - a pitfall of the default split

The default method (ANOVA) in CART cannot separate zeros and non-zeros as expected.
The zeros will be combined with some small but non-zero values.
The sum of squared errors is greatly a�ected by the prediction error of the non-zero responses.
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The overview of CART algorithm and its notation

Step 1: Grow a large tree.
Recursive binary splitting.

Step 2: Prune the large tree.
Cost-complexity pruning.

Notation:
Consider a dataset  with  observations.
For each -th observation, where ,

 is a vector of  explanatory variables sampled from a space
,

 is a response variable sampled from a space .

(X, y) = ((X1, y1) , (X2, y2) , … , (XN , yN))T
N

i i = 1, 2, … ,N
Xi = (Xi1,Xi2, … ,Xip) p

X = X1 × X2 × ⋯ × Xp

yi Y
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CART - grow a large tree

Regression tree, denoted by , is produced by partitioning the space of the explanatory
variables  into  disjoint regions, which are denoted as .
For each region , where , a constant  is assigned as a predicted value
for observations falling into the region .
The regression tree is given by: for each , the predicted value

where  is the vector of parameters for the regression tree,
and , if , while , if .

T (Xi; θ)
X M R1,R2, … ,RM

Rm m = 1, 2, … ,M cm ∈ R+

Rm

i = 1, 2, … ,N

ŷ i = T (Xi; θ) =
M

∑
m=1

cm1Rm
(Xi) ,

θ = (R1,R2, … ,RM , c1, c2, … , cM)
1Rm

(Xi) = 1 Xi ∈ Rm ⊆ X 1Rm
(Xi) = 0 Xi ∉ Rm
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CART - recursive binary splitting

The CART algorithm identi�es the optimal parameters for the regression tree via recursive binary
splittings.
Fix a binary splitting step .

Denote  as the remaining

dataset with  observations, which serves as a parent node and depends on the former splitting
steps .
In particular, when ,  and .

u = 1, 2, …

(X(u), y(u)) = ((X
(u)
1 , y

(u)
1 ) ,(X

(u)
2 , y

(u)
2 ) , … ,(X

(u)

N (u) , y
(u)

N (u)))
T

N (u)

1, 2, … ,u − 1

u = 1 (X(1), y(1)) = (X, y) N (1) = N
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CART - recursive binary splitting

The dataset in the parent node  is potentially split into two daughter nodes with

respective datasets:

If  is continuous; there exist  and  such that, for any

, , while, for any ; ,

If  is categorical, there exists  such that, for any ,

, while, for any , .

(X
(u), y(u))

(X(u,l), y(u,l)) = ((X
(u,l)
1 , y

(u,l)
1 ) ,(X

(u,l)
2 , y

(u,l)
2 ) , … ,(X

(u,l)

N (u,l) , y
(u,l)

N (u,l)))
T

,

(X(u,r), y(u,r)) = ((X
(u,r)
1 , y

(u,r)
1 ) ,(X

(u,r)
2 , y

(u,r)
2 ) , … ,(X

(u,r)

N (u,r) , y
(u,r)

N (u,r)))
T

,

Xj(u) j(u) = 1, 2, … , p s(u) ∈ Xj(u)

i = 1, 2, … ,N (u,l) X
(u,l)

ij(u) ≤ s(u) i = 1, 2, … ,N (u,r) X
(u,r)

ij(u) > s(u)

Xj(u) s(u) ∈ P (Xj(u)) i = 1, 2, … ,N (u,l)

X
(u,l)

ij(u) ∈ s(u) i = 1, 2, … ,N (u,r) X
(u,r)

ij(u) ∉ s(u)
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CART - recursive binary splitting

If the explanatory variable  is continuous, de�ne two regions of the space  by

if the explanatory variable  is categorical, de�ne

Xj(u) Xj(u)

R(u,l) (j(u), s(u)) = {xj(u) ∈ Xj(u) : xj(u) ≤ s(u)} ,  and 

R(u,r) (j(u), s(u)) = {xj(u) ∈ Xj(u) : xj(u) > s(u)} ;

Xj(u)

R(u,l) (j(u), s(u)) = {xj(u) ∈ Xj(u) : xj(u) ∈ s(u)} = s(u),  and 

R(u,r) (j(u), s(u)) = {xj(u) ∈ Xj(u) : xj(u) ∉ s(u)} = (s(u))
c
.

11



CART - loss function SSE

The classical loss function, to determine the optimal parameters for the regression tree, is given by
the sum of squared errors (SSE),

where the set of all feasible vectors of parameters

in which  is the power set of , i.e., the set of all subsets of .

θ̂ = argmin
θ∈Θ

 L (y, ŷ) = argmin
θ∈Θ

 
N

∑
i=1

(yi − ŷ i)
2,

Θ = {(R1,R2, … ,RM , c1, c2, … , cM) ∈ P (X) × P (X) × ⋯ × P (X) × Y × Y × ⋯ × Y :

∪M
m=1Rm = X ,  and Rm1

∩ Rm2
= ∅ for m1 ≠ m2} ,

P (X) X X
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CART - optimal parameters under SSE

The optimal parameters  and  are given by

which is also known as the ANOVA best split.

ĵ
(u)

ŝ
(u)

(ĵ
(u)

, ŝ(u)) = argmin
j(u)=1,2,…,p;

s(u)∈X
j(u)  or s(u)∈P(X

j(u))

N (u,l)

∑
i=1

(y(u,l)
i − ĉ

(u,l) (j(u), s(u)))
2

+
N (u,r)

∑
i=1

(y(u,r)
i − ĉ

(u,r) (j(u), s(u)))
2
,
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CART - predicted values under SSE

The optimal parameters  and  (the predicted values at two

daughter nodes) are given by:

ĉ
(u,l) (ĵ

(u)
, ŝ(u)) ĉ

(u,r) (ĵ
(u)

, ŝ(u))

ĉ (u,l) (ĵ
(u)

, ŝ(u)) = ∑

i:X
(u)

iĵ
(u)

∈R(u,l)(ĵ
(u)

,ŝ(u))

y
(u)
i =

N (u,l)

∑
i=1

y
(u,l)
i ,

1

N (u,l)

1

N (u,l)

ĉ
(u,r) (ĵ

(u)
, ŝ(u)) = ∑

i:X
(u)

iĵ
(u)

∈R(u,r)(ĵ
(u)

,ŝ(u))

y
(u)
i =

N (u,r)

∑
i=1

y
(u,r)
i .

1

N (u,r)

1

N (u,r)
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Actuarial modified loss function - WSSE

Modify the classical SSE loss function by assigning di�erent weights to the squared errors for
observations with zero in the response variable and those with non-zero in the response variable.
We de�ne the following loss function, which is given by the weighted sum of squared errors
(WSSE):

where  is a binary splitting step.

In particular, when , the WSSE loss function is reduced to the classical SSE function.

LW (y(u), ŷ
(u)) = w

(u)
0 ∑

i:y
(u)
i =0

(y(u)
i − ŷ

(u)
i )

2
+ (1 − w

(u)
0 ) ∑

i:y
(u)
i ≠0

(y(u)
i − ŷ

(u)
i )

2

= w
(u)
0 ∑

i:y
(u)
i =0

(ŷ (u)
i )

2
+ (1 − w

(u)
0 ) ∑

i:y
(u)
i ≠0

(y(u)
i − ŷ

(u)
i )

2
,

u = 1, 2, …

w
(u)
0 = 0.5
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Optimal split under WSSE

Then optimal parameters  and  are given byĵ
(u)

ŝ
(u)

(ĵ
(u)

, ŝ(u)) = argmin
j(u)=1,2,…,p;

s(u)∈X
j(u)  or s(u)∈P(X

j(u))

w
(u)
0 ∑

i:y
(u,l)
i =0

ĉ
(u,l)(ĵ

(u)
, ŝ(u))

2

+ (1 − w
(u)
0 ) ∑

i:y
(u,l)
i ≠0

(y(u,l)
i

− ĉ (u,l) (ĵ
(u)

, ŝ(u)))
2

+ w
(u)
0 ∑

i:y
(u,r)

i =0

ĉ
(u,r)(ĵ

(u)
, ŝ(u))

2

+ (1 − w
(u)
0 ) ∑

i:y
(u,r)

i ≠0

(y(u,r)
i − ĉ (u,r) (ĵ

(u)
, ŝ(u)))

2

.
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Predicted values under WSSE

The optimal parameters  and  (the predicted values at two

daughter nodes) are given by:

where
, , representing

the number of observations with zero response in the daughter nodes.

ĉ
(u,l) (ĵ

(u)
, ŝ(u)) ĉ

(u,r) (ĵ
(u)

, ŝ(u))

ĉ
(u,l) (ĵ

(u)
, ŝ(u)) = ,

(1 − w
(u)
0 )∑

i:y
(u,l)

i ≠0
y

(u,l)
i

w
(u)
0 N

(u,l)
0 + (1 − w

(u)
0 )(N (u,l) − N

(u,l)
0 )

ĉ
(u,r) (ĵ

(u)
, ŝ(u)) = ,

(1 − w
(u)
0 )∑

i:y
(u,r)
i ≠0

y
(u,r)
i

w
(u)
0 N

(u,r)
0 + (1 − w

(u)
0 )(N (u,r) − N

(u,r)
0 )

N
(u,l)
0 = ∣

∣{i = 1, … ,N (u,l) : y
(u,l)
i

= 0}∣
∣ N

(u,r)
0 = ∣

∣{i = 1, … ,N (u,r) : y
(u,r)
i

= 0}∣
∣
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Canberra distance

Canberra distance, introduced by Lance and Williams (1966) for similarity analysis, is de�ned by, for
any two real numbers  and ,

Canberra distance is essentially the Euclidean distance being normalized by the magnitude of the
two real numbers in the denominator.
The Canberra distance is often used for data scattered around the origin, as it is a biased
measure and is very sensitive to values close to zero. For example,  and

.

(Observed, Predicted) Squared error Canberra Squared Canberra

(0, 1)

(100, 101)

p q

dCAN (p, q) = {
0 if p = q = 0,

otherwise.
|p−q|

|p|+|q|

dCAN (0, 1) = 1
dCAN (100, 101) ≈ 0.005

(0 − 1)2 = 1 = 1
∣0−1∣

∣0∣+∣1∣
= 1

(0−1)2

02+12

(100 − 101)2 = 1 ≈ 0.005
∣100−101∣

∣100∣+∣101∣
≈ 0.00005

(100−101)2

1002+1012 18



Actuarial modified loss function - SSCE

To be in line with the order of errors in the SSE and the WSSE, which is of squared, also de�ne the
squared Canberra distance by, for any two real numbers  and ,

We de�ne the following loss function which is given by the sum of squared Canberra errors (SSCE):

where  is a binary splitting step.

p q

dSCAN (p, q) = {
0 if p = q = 0,

otherwise.
(p−q)2

p2+q2

LC (y(u), ŷ
(u)) =

N (u)

∑
i=1

dSCAN (y
(u)
i , ŷ

(u)
i ) ,

u = 1, 2, …
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Optimal split under SSCE

Minimize the SSCE,

(ĵ
(u)

, ŝ(u), ĉ (u,l) (ĵ
(u)

, ŝ(u)) , ĉ (u,r) (ĵ
(u)

, ŝ(u)))

= argmin
j(u)=1,2,…,p;

s(u)∈X
j(u)  or s(u)∈P(X

j(u));

c(u,l)(j(u),s(u))∈R+;

c(u,r)(j(u),s(u))∈R+

LC (y(u), ŷ
(u)) = argmin

j(u)=1,2,…,p;

s(u)∈X
j(u)  or s(u)∈P(X

j(u));

c(u,l)(j(u),s(u))∈R+;

c(u,r)(j(u),s(u))∈R+

N (u)

∑
i=1

dSCAN (y
(u)

i , ŷ
(u)

i )

= argmin
j(u)=1,2,…,p;

s(u)∈X
j(u)  or s(u)∈P(X

j(u));

c(u,l)(j(u),s(u))∈R+;

c(u,r)(j(u),s(u))∈R+

N (u,l)

∑
i=1

dSCAN (y
(u,l)
i , c(u,l) (j(u), s(u)))+

N (u,r)

∑
i=1

dSCAN (y
(u,r)
i , c(u,r) (j(u), s(u))).
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Properties of SSCE

Although the optimization problem cannot be solved explicitly, the existence of the solution can be
proved.

Lemma 1: If  and  exist, then

where  and  are the smallest response values in the respective daughter nodes, while

 and  are the largest response values in the respective daughter nodes.

ĉ
(u,l) (ĵ

(u)
, ŝ(u)) ĉ

(u,r) (ĵ
(u)

, ŝ(u))

y
(u,l)

(1)
≤ ĉ

(u,l) (ĵ
(u)

, ŝ(u)) ≤ y
(u,l)

(N (u,l))
,

y
(u,r)
(1)

≤ ĉ (u,r) (ĵ
(u)

, ŝ(u)) ≤ y
(u,r)

(N (u,r))
,

y
(u,l)
(1)

y
(u,r)
(1)

y
(u,l)

(N (u,l))
y

(u,r)

(N (u,r))
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Properties of SSCE

Proposition 1: The predicted values  and  exist.

Proposition 2: If  (resp. ),

then  (resp. ) is unique and must be ; moreover,

(resp. ).

ĉ
(u,l) (ĵ

(u)
, ŝ(u)) ĉ

(u,r) (ĵ
(u)

, ŝ(u))

N
(u,l)
0 > N (u,l)1

2
N

(u,r)
0 > N (u,r)1

2

ĉ (u,l) (ĵ
(u)

, ŝ(u)) ĉ (u,r) (ĵ
(u)

, ŝ(u)) 0

∑N (u,l)

i=1 dSCAN (y
(u,l)
i , ĉ (u,l) (ĵ

(u)
, ŝ(u))) = N (u,l) − N

(u,l)
0

∑N (u,r)

i=1 dSCAN (y
(u,r)
i , ĉ (u,r) (ĵ

(u)
, ŝ(u))) = N (u,r) − N

(u,r)
0
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Practical implementation

We refer to the tree-based model using the WSSE loss function as the WSSE tree model, and the
model using the SSCE loss function as the Canberra tree model.
To modify the classical CART algorithm with the two proposed loss functions, we employ the rpart
function in the R package rpart (Therneau and Atkinson, 1997).
The package provides a user splits option (Therneau, 2019), which provides a way to extend rpart
and validate new methodologies.
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Results on the motivating example

When the data contains a large proportion of zero responses, WSSE trees and Canberra trees provide
better splitting performance than ANOVA trees.
The Canberra tree can e�ectively separate zeros and non-zeros as expected.
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Simulation study - data generation

To mimic the real-life insurance datasets, we generate the synthetic training and test datasets,
with 53% of the observations in the training dataset and 63% in the test dataset have a zero
response.
Simulation design:

Explanatory variables: .
, where . , .

, random sampling from the set of integers , with respective
probabilities of .
Linear coe�cients: 

Response variable: , generated from a Tweedie GLM framework,

with the log link function , the dispersion parameter , and the
variance power parameter .

X = (Xcategorical, Xcontinuous)
Xcontinuous ∼ Np(0, Σ) Σij = Cov(Xi, Xj) = (0.8)i−j N = 100 p = 10

Xcategorical (−3, −2, 1, 4)
(0.1, 0.2, 0.2, 0.5)

β = (−0.1, 1.0, 1.0


2 cat

, 0.5, 0.5


2 cat

, 0
1 cat

, 1.0, 1.0


2 con

, 0.5, 0.5


2 con

, 0
1 con

)T

Y

yi ∼ Tweedie(μi,ϕ, ξ),

g(μi) = log(μi) = Xiβ ϕ = 2
ξ = 1.7
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Result on the simulated dataset - fitted trees

The overall structures of the WSSE tree and Canberra tree models are quite di�erent from that of
the ANOVA tree.
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Result on the simulated dataset - fitted trees

Both the WSSE tree and Canberra tree models reveal apparent structural changes at node 1 (the
root node), which is the most critical split.
In the Canberra tree model, the �rst split is initiated by the variable V6, whereas in the ANOVA tree
model and the WSSE tree model, the root nodes are split by the variable V8 and V5 respectively.
V6 is strongly correlated with the response variable, while V5 and V8 are noisy variable or weakly
correlated with the response variable.
The Canberra tree model is more e�ective in �nding the correct explanatory variable to split
under the imbalanced problem presented in the dataset.
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Results on the simulated dataset - fitted trees

The �rst few splits in the ANOVA tree are mainly determined by the continuous variables, while
categorical variables, such as V1 and V2, are taken into account in the WSSE tree and Canberra tree
models.
For instance, the node 2 in the WSSE tree is divided by the categorical variable V2, and the node 3
in the Canberra tree model is divided by the categorical variable V1.
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Results on the simulated dataset - fitted trees

We can see from the percentages of zeros on the terminal nodes, the Canberra tree model is more
likely to have 0% or 100% zero claims than the other two tree models, which indicates the
Canberra tree model outperforms the other two models at separating the zero and non-zero
claims.
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The Canberra tree model is superior to the
other two models in predicting the zero
responses.
The response values predicted by the ANOVA
tree are centered on a relatively small
positive value; on the other hand, the
Canberra tree model is able to identify zero
claims precisely.

Results on the simulated dataset - density plots

30



Results on the simulated dataset - heatmap

In general, the Canberra tree model has the best overall prediction performance.
Speci�cally, the Canberra tree model performs much better in MAPE and MPE, indicating that the
Canberra tree model has a good �t for the observations with the non-zero response.
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Robustness of simulation study - radar plot

To ensure robustness, we re-examine these performances to each of 100 synthetic datasets, which
are still based on the same design in the simulation study, but are generated by di�erent random
seeds.
The radar plot summarizes these records by displaying the number of datasets in which each
model performs the best under each measure.
The WSSE tree model is slightly superior to the ANOVA tree model.
The Canberra tree model substantially outmatches these two tree models under all measures,
except under the Gini index being exceeded by the ANOVA and WSSE tree models. 32



Concluding remarks

Motivation:
The default CART is not su�cient to handle insurance datasets that contain a large number of
zeros.

Modi�cation:
We propose two actuarial modi�ed loss functions, namely the weighted sum of squared error
(WSSE) and the sum of squared Canberra error (SSCE) loss functions, as the node impurity
function under the CART framework

Results:
The motivating and experimental examples demonstrate that the WSSE tree and Canberra tree
models are more e�ective in separating observations of zero responses from non-zero
responses compared to the default ANOVA method.
The simulation study suggests that the Canberra regression tree model o�ers the best overall
prediction performance, especially when it comes to the observations with zero response.
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Q & A
Thank you for your attention!
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