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From claim counts to interarrival times

Introduction
Claim counting is deeply rooted in actuarial modelling, especially
with the common use of Generalised Linear Models (GLMs) and
distributions including Poisson and Negative Binomial. The growing
use of neural networks often comes with a one-to-one translation of
extensions (e.g. zero-inflation) of traditional models.

In the context of assumption-free machine learning, it is natural to
consider also the undisclosed data: the exact occurence dates of
claims. Then the next step is to model the claim interarrival times
instead of the aggregated counts. This leads to the field of
time-to-event (or survival) analysis. For our goal it is important to
have a generic model.



From claim counts to interarrival times

Choosing a neural framework
In recent years, several neural models have been introduced. We
mention DeepSurv and DeepHit and refer to the work of Katzman
et al. (2018) respectively Lee et al. (2018). DeepHit offers
competing events without the restriction of proportional hazards
(DeepSurv), but the modelled time is discrete where for actuarial
modelling a continuous model is preferred.

Therefore, we introduce an alternative, building on a very simple
but effective neural framework for modelling a continuous
cumulative distribution function (CDF). We combine this model
with a model for categorical distribution to derive at a
time-to-event model. The choice for modelling a CDF turns out to
be convenient for the implementation of censoring.



Time-to-event neural framework

Component 1: continuous distribution
For a continuous dependent variable we model the cumulative
distribution function (CDF), following an architecture of Chilinski
(2020):
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▶ the neuron in the last layer has sigmoid activation, other
neurons have tanh activation

▶ dashed arrows indicate non-negative weights to ensure a
non-decreasing CDF for all input values



Time-to-event neural framework

Why modelling the CDF instead of the probability density function
(PDF)?
▶ CDF has easy characteristics: smooth increasing function

between 0 and 1 is sufficient
▶ quantiles can be calculated from the monotone increasing F−1

by using binary search
▶ random sampling is possible by calculating F−1(rand)
▶ calculation of mean, variance, skewness etc. can be calculated

from a derived set of random or "systematic" quantiles, using
uniformly distributed fixed sets between 0 and 1



Time-to-event neural framework

Component 2: categorical distribution
For a categorical dependent variable, we model the PDF with the
following architecture:

x1
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σ P(c1 |x)
σ P(c2 |¬c1,x)
σ P(c3 |¬c1,¬c2,x)

▶ the neuron in the last layer has sigmoid activation, other
neurons have tanh activation

▶ the outcome y in the above example can take four values:
c1, c2, c3 and c4



Time-to-event neural framework

▶ the neurons in the last layer are ordered as a sequential logit
and can each separately take any value between 0 and 1

▶ for two categories the model is equal to the logistic network
▶ the chosen approach is a natural extension of two categories
▶ for more than two categories the standard literature uses

unconditional probabilities in combination with the softmax
function to ensure that the sum of the probabilities equals 1.
Our network only needs sigmoid activations.



Time-to-event neural framework

Components 1+2: time-to-event distribution
For the joint distribution of time and events, we combine the earlier
models:
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t

σ P(e1 |x)
σ P(e2 |¬e1,x)

σ F (t |e1,x)
σ F (t |e2,x)

Each (winning) event ei has its own sub-CDF. The joint
distribution can be written as

f (t,ei |x) = P(ei |x) · f (t |ei ,x)



Time-to-event neural framework

Notice that the PDF and hazard functions can be directly derived
from the network.

Left-, right- and interval censored observations contribute to the
likelihood in the following way:
▶ in case of event ei in (t1,t2) :

P(ei |x) · (F (t2 |ei ,x)− F (t1 |ei ,x))
▶ no event in (−∞,t) :

1 −
∑

i P(ei |x) +
∑

i P(ei |x) · (F (∞|ei ,x)− F (t |ei ,x))

In practice, the function F does not have exact limits 0 and 1. This
explains the formulation of the expression in the case of no event.

In case of event ei at time t we just use P(ei |x) · f (t |ei ,x).



Example Weibull distribution

In a synthetic example, we show the application of the
time-to-event framework on unit time-interval (0,1) with only one
(claim) event:
▶ the population exists of 3 categories with each 25,000 policies

having different distributions of interarrival times

▶ category 1: t
iid∼ Exp(λ = 1)

▶ category 2: t
iid∼ Weibull(λ = 1, k = 0.5)

▶ category 3: t
iid∼ Weibull(λ = 1, k = 1.5)

▶ extra rule for category 2 and 3: at every event, the scale
parameter λ is multiplied by 1.05

▶ for each policy: as long as total time < 1, add a sampled
observation to the data, otherwise, add a final right-censored
observation to the data



Example Weibull distribution

We utilise the neural framework with the following setup:
▶ 5 layers with a total of only 18 neurons
▶ covariates: hot-valued categories and number of past claims
▶ map unit time interval to (−∞,∞) with t → log( t

1−t )

CDF first arrival time

The network reproduces the different distributions accurately.



Example Weibull distribution

The PDF and hazard functions for the first arrival are also
accurately reproduced for all categories:

PDF first arrival time Hazard function first arrival time

There are "glitches" in the estimated functions near t=0 and t=1,
due to the mapping of time on (−∞,∞).



Example Weibull distribution

We return to claim counts and verify if the network can reproduce
the original data by simulating the population 100 times and take
the average counts as outcome.

The claims distribution of category 1 is Poisson distributed,
because of the exponential interarrival time.

Claims distribution category 1



Example Weibull distribution

The claims distributions of category 2 and 3 are different from
category 1:
▶ category 2 is overdispersed
▶ category 3 is underdispersed

Claims distribution category 2 Claims distribution category 3



Example Weibull distribution

Concluding remarks
▶ the modelled interarrival times are accurately reproduced for

all categories
▶ the claim counts are also accurately reproduced (by performing

simulation)
▶ modelling interarrival times can easily outperform traditional

counting GLMs

Implementation
This project has been built in plain Julia code and can be found on
https://github.com/perunum/claim-interarrival-times



Conclusions

Modelling claim interarrival times instead of (just) claim counts can
offer improved accuracy. The proposed time-to-event neural
framework provides a small and assumption-free solution:
▶ including multiple competing risks
▶ general left-, right- and interval censoring
▶ modelling sub-CDFs for every event, PDF and hazard

functions can be computed directly

The framework can contribute to a more insightful modelling of
claim-generating processes. By providing a more granular
connection to policy terms and conditions, it has the potential to
enhance pricing. Moreover, the framework is broadly applicable for
time-to-event analysis.
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