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The Need for Explainable and Robust Al in High-Stakes Decision-Making

High Predictive Power vs. High Risk

m Modern machine learning methods are extremely powerful for modeling
complex, high-dimensional data at scale (Jordan & Mitchell, 2015; LeCun
et al., 2015).

m However, in high-stakes applications (e.g. insurance), model performance
alone is insufficient. Decisions must be interpretable, transparent, and
robust to maintain trust and meet ethical, regulatory, and societal
requirements (Doshi-Velez & Kim, 2017; Karimian et al., 2022; Svetlova,
2022).

Limitations of Post-Hoc Explainability
m Popular methods like SHAP and LIME offer approximations, but are often
unstable and unfaithful to the model's true decision logic (Lundberg & Lee,
2017; Ribeiro et al., 2016; Rudin, 2019).
m Regulatory frameworks such as the EU Al Act and GDPR demand
explanations that are consistent, understandable, and reproducible (EU Al
Act, 2024; GDPR, 2016).
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Challenges Beyond Explainability: Robustness

Need for Intrinsic Transparency and Robustness
m Even inherently interpretable models (e.g., GAMs, rule-based methods) lose
credibility if the chosen features or relationships shift drastically due to
minor data perturbations (Hamer & Dupont, 2021; Kalousis et al., 2007).
m In high-stakes applications, domain experts often prioritize a more stable
feature selection process over one that yields slightly higher accuracy but
exhibits greater variability (Hamer & Dupont, 2021).
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Research Contribution: Interpretable Modeling + Robust Feature Selection

Neural Additive Models (NAMs)

m We employ NAMs, which leverage deep learning to learn feature-wise
relationships while maintaining an interpretable additive structure (Agarwal
et al., 2021).

m Unlike black-box models, NAMs allow for direct visualization and an exact
explanation of how each feature influences predictions, ensuring faithful
and reliable explanations.

Robust Feature Selection

m We extend the Single Feature Introduction Test (SFIT) (Horel & Giesecke,
2022) by integrating a mean-based selection criterion into a
forward-selection scheme.

m Using bootstrap aggregation, we identify features that are consistently
important across resampled datasets—boosting robustness to data
perturbations.
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Transparent Models + Robust Feature Selection

Model Comparison
m GLM: Industry baseline
m GAM: Classical transparent model
m Feed-Forward Neural Net: Black-box benchmark
m Gradient Boosting Machine: Black-box benchmark
m Neural Additive Model (NAM): Deep Learning Glassbox Model

Unified Pipeline

m Step 1: Apply forward feature selection using modified SFIT across
bootstraps

m Step 2: Select features that are consistently useful
m Step 3: Fit final models on selected features
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Robust Feature Selection

Efficient, Stable, and Model-Agnostic

Key ldea:

m Test each feature’s value by asking:
“Does this feature consistently reduce prediction error?”

Our Approach:
m Build on the SFIT framework (Horel & Giesecke, 2022)

m Use a mean-based test (Diebold-Mariano) to assess importance
m Add features forward if they significantly improve model performance

m Repeat on many bootstrap samples to ensure stability

Why It Matters:
= No need to retrain: Efficient & scalable
m Handles interactions without exhaustive search
m Robust to data noise: Final feature set is stable and credible
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Experimental Workflow

Datasets

1. Public MTPL Dataset

m 163k policyholders; standard benchmark in actuarial research (Denuit &
Lang, 2004; Henckaerts et al., 2021).

m Policy periods range from 1 day to 1 year; static risk factors.

2. Proprietary Motor Dataset
m Real-world dataset from German insurer.
m 10M records with detailed policy & claims data.
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Experimental Workflow

Modeling Pipeline Overview

Unified Pipeline for Frequency and Severity Modeling:

1. Train/test split (80/20, stratified)
2. Generate B = 25 bootstrap samples
3. Robust feature selection:
m Select main & interaction effects (keep if selected in > 60% of runs)
4. Tune model hyperparameters via random search
5. Refit final model on selected features (100 bootstraps)
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Predictive Performance - Poisson Deviance

Table 1: Poisson Deviance Loss by Dataset

Dataset Model Mean Loss Lower 95% ClI Upper 95% CI
5 GLM-Frequency 0.5320 0.5318 0.5323
% GAM-Frequency 0.5319 0.5317 0.56322
% ‘g FFNN-Frequency  0.5334 0.5322 0.5344
g NAM-Frequency 0.5316 0.5310 0.5322
a GBM-Frequency 0.5292 0.5284 0.5300
. GLM-Frequency 0.2193 0.2193 0.2193
E i} GAM-Frequency 0.2192 0.2192 0.2193
2 :’_,’ FFNN-Frequency 0.2192 0.2190 0.2196
S8  NAM-Frequency 0.2192 0.2191 0.2194
a

GBM-Frequency 0.2194 0.2190 0.2209
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Predictive Performance - Gamma Deviance

Table 2: Gamma Deviance Loss by Dataset

Dataset Model Mean Loss Lower 95% ClI Upper 95% CI
5 GLM-Severity 2.2667 2.2618 2.2733
E 5 GAM-Severity 2.2667 2.2618 2.2733
% ‘; FFNN-Severity ~ 2.3742 2.2720 2.4124
=98 NAM-Severity 2.2605 2.2584 2.2633
g GBM-Severity 2.2598 2.2444 2.2774
. GLM-Severity 0.9928 0.9917 0.9938
55 GAM-Severity 0.9925 0.9912 0.9936
29 FFNN-Severity ~ 0.9966 0.9852 1.0138
8 NAM-Severity ~ 0.9923 0.9856 1.0010
o

GBM-Severity 0.9931 0.9922 0.9948
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Figure 1: Robust Feature Selection for Main Effects in GAM and NAM.
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Interpretability - Feature Effects
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Figure 3: Partial Effect Plots fo the Age of the Youngest Driver and the Annual
Kilometers the Frequency Models.
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