Eliciting claims development patterns and costs hidden in backlogs

Filip Lindskog, Stockholm University

Based on joint work with Mario Wüthrich

London, June 20, 2025

 Claims reported (R) in period t are not necessarily processed/paid (P) in period t due to limited capacity (C)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Claims reported (R) in period t are not necessarily processed/paid (P) in period t due to limited capacity (C)
- Not yet processed reported claims generate a backlog (B)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Claims reported (R) in period t are not necessarily processed/paid (P) in period t due to limited capacity (C)
- Not yet processed reported claims generate a backlog (B)
- ▶ $P_t = \min(B_t + R_t, C_t)$ (total number of processed claims)

- Claims reported (R) in period t are not necessarily processed/paid (P) in period t due to limited capacity (C)
- Not yet processed reported claims generate a backlog (B)
- ▶ $P_t = \min(B_t + R_t, C_t)$ (total number of processed claims)
- ► $B_{t+1} = \max(B_t + R_t C_t, 0)$ (total number of forwarded backlog claims)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Claims reported (R) in period t are not necessarily processed/paid (P) in period t due to limited capacity (C)
- Not yet processed reported claims generate a backlog (B)
- ▶ $P_t = \min(B_t + R_t, C_t)$ (total number of processed claims)
- ► $B_{t+1} = \max(B_t + R_t C_t, 0)$ (total number of forwarded backlog claims)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

$$\blacktriangleright B_{t+1} = B_t + R_t - P_t$$

- Claims reported (R) in period t are not necessarily processed/paid (P) in period t due to limited capacity (C)
- Not yet processed reported claims generate a backlog (B)
- ▶ $P_t = \min(B_t + R_t, C_t)$ (total number of processed claims)
- ► $B_{t+1} = \max(B_t + R_t C_t, 0)$ (total number of forwarded backlog claims)

$$\blacktriangleright B_{t+1} = B_t + R_t - P_t$$

 Claims are labeled by occurrence and development period: R_{i,j}, P_{i,j}, B_{i,j}

- Claims reported (R) in period t are not necessarily processed/paid (P) in period t due to limited capacity (C)
- Not yet processed reported claims generate a backlog (B)
- ▶ $P_t = \min(B_t + R_t, C_t)$ (total number of processed claims)
- ► $B_{t+1} = \max(B_t + R_t C_t, 0)$ (total number of forwarded backlog claims)

$$\blacktriangleright B_{t+1} = B_t + R_t - P_t$$

 Claims are labeled by occurrence and development period: R_{i,j}, P_{i,j}, B_{i,j}

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 Claims for different occurrence periods share processing capacity

- Claims reported (R) in period t are not necessarily processed/paid (P) in period t due to limited capacity (C)
- Not yet processed reported claims generate a backlog (B)
- ▶ $P_t = \min(B_t + R_t, C_t)$ (total number of processed claims)
- ► $B_{t+1} = \max(B_t + R_t C_t, 0)$ (total number of forwarded backlog claims)

$$\blacktriangleright B_{t+1} = B_t + R_t - P_t$$

 Claims are labeled by occurrence and development period: R_{i,j}, P_{i,j}, B_{i,j}

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 Claims for different occurrence periods share processing capacity

Illustration: first come first served

 $B_t = 2$: points in the orange region, $R_t = 7$: points in the lime region, $P_t = \min(B_t + R_t, C_t) = 4$: points in the blue region, $B_{t+1} = B_t + R_t - P_t = 5$: points in the yellow region.

Data P_{i,j} on number of paid claims distorted by backlogs can not be used as input to classical reserving methods.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Data P_{i,j} on number of paid claims distorted by backlogs can not be used as input to classical reserving methods.
 - How can development patterns hidden in backlogs be extracted from such data in order to do claims reserving?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Data P_{i,j} on number of paid claims distorted by backlogs can not be used as input to classical reserving methods.
 - How can development patterns hidden in backlogs be extracted from such data in order to do claims reserving?
- On the one hand backlogs imply delayed claims payments which may make claims more costly. On the other hand large processing capacity implies substantial fixed costs.

- Data P_{i,j} on number of paid claims distorted by backlogs can not be used as input to classical reserving methods.
 - How can development patterns hidden in backlogs be extracted from such data in order to do claims reserving?
- On the one hand backlogs imply delayed claims payments which may make claims more costly. On the other hand large processing capacity implies substantial fixed costs.
 - How should optimal capacity sizing for claims handling units be done in order to minimize total costs (fixed and delay adjusted claims costs)?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・