STATISTICAL SCIENCE UNIVERSITY COLLEGE LONDON

Fine-grained mortality forecasting with deep learning

Insurance data science conference, London, 19th June 2025

Huiling Zheng*, Hai Wang, Rui Zhu, Jing-Hao Xue

* huiling.zheng.16@ucl.ac.uk

IDSC 2025 – Huiling Zheng

Background

- Mortality rate $q_{x,t}$ is the probability of death at a given age, in a particular year.
- Mortality predictions are crucial assumptions for actuaries.

Annual National Mortality Forecasting, Autoregressive

Traditional forecasting, e.g.,

- Lee-Carter model (Lee and Carter (1992))
- Cairns-Blake-Dowd (CBD) (Cairns et al. (2006))

Deep learning forecasting, e.g.,

- RNN/LSTM (Nigri et al. (2019), Chen and Khaliq (2023))
- CNN (Perla et al. (2021), Wang et al. (2021))
- Transformers (Roshani et al. (2022), Wang et al. (2024))

by Country, Gender

Fine-grained mortality forecasting: exogenous predictors, weekly, regional level data (Robben et al. (2025))

Robben et al. (2025): fine-grained mortality modelling, using XGBoost to link exogenous data (weather and pollution) to weekly death deviations from a Serfling-type Baseline.

Why Fine-grained?

- Climate extremes + ageing population demand weekly, regional forecasts.
- Traditional annual models miss short-term & local spikes.
- Regulators urge climate-aware risk assessment.

We propose **MortFCNet**: forecast weekly death rates from region-specific weather inputs using deep neural networks, to learning these complex relationships, without manual feature engineering.

Data sources

- 1. Weekly Death Counts
- 2. Weekly Exposure to Risk
- 3. Daily Weather Data
- 4. Geographical Coordinates

Weather Variables	Descriptions
Tmax	Highest air temperature observed each day (°C) recorded 2 meters above ground level.
Tavg	Daily mean air temperature (°C) recorded 2 meters above the ground level.
Tmin	Lowest air temperature reached during the day (°C) recorded 2 meters above the ground level.
Hum	Daily average relative humidity, measured at 2 meters above the ground level. Relative humidity is defined as the percentage of actual humidity relative to saturation humidity.
Rain	Total daily precipitation for the day (mm), reported as liquid-water equivalent and encompassing rain, snow, and hail per square meter.
Wind	Daily mean wind speed in (m s ⁻¹) , measured at 10 meters above ground level.

Aggregation and feature engineering

Table 1: Weather factors and descriptions ((ECMWF), 2023)).

- 1. Population-weighted gridded weather \rightarrow region-week
- 2. Weekly averages (Tmax, Tmin, Tavg, RH, rain, wind)
- 3. Anomalies & extreme indices (e.g., 95th / 5th percentile)
- 4. Seasonal tag (Spring...Winter)
- 5. 1-week lags

$$\mu_{t,v}^{g}$$
 - fine-grained mortality rate for year t , week v , and region g

Serfling-type Baseline

Poisson GLM: $\log \mu_{t,\nu}^{(g)} = \theta_0^{(g)} + \theta_1^{(g)} t + \theta_2^{(g)} \sin\left(\frac{2\pi\nu}{52.18}\right) + \theta_3^{(g)} \cos\left(\frac{2\pi\nu}{52.18}\right) + \theta_4^{(g)} \sin\left(\frac{2\pi\nu}{26.09}\right) + \theta_5^{(g)} \cos\left(\frac{2\pi\nu}{26.09}\right)$

- Calibrated with spatial smoothness via quadratic penalty on neighbour coefficients
- Captures broad seasonality but fixed shape, no exogenous drivers

XGBoost Calibration

- Learns multiplier φ to adjust baseline deaths
- Inputs: engineered weather, spatial & seasonality
- Good in-sample fit; prone to overfit & manual feature burden

Experimental Design

 Train 2013-2018, Test 2019. Cross-validated hyper-parameters. Over 200 NUT-3** regions from Switzerland (CH), France (FR) and Italy (IT), age 65+ only, unisex.

**The Nomenclature of Territorial Units for Statistics (NUTS), NUTS-3 represents the smallest regional level.

IDSC 2025 - Huiling Zheng

MortFCNet Architecture

Figure 1: MortFCNet Architecture

Mean Squared Error for Log of Mortality by Region and Method for IT (Test Year: 2019)

Figure 2: MSE heatmap for a) France, b) Italy, and c) Switzerland. Benchmarking Baseline, XGBoost and MortFCNet.

Figure 2: MSE heatmap for a) France, b) Italy, and c) Switzerland. Benchmarking Baseline, XGBoost and MortFCNet.

		MSE (×10 ⁶)		
		Training (2013-2018)	Test (2019)	
Overall	Lee-Carter	0.0181	0.0201	
Overall	Baseline	0.0150	0.0134	
Overall	XGBoost	0.0131	0.0138	
Overall	MortFCNet	0.0123	0.0125	

Table 2: overall train and test MSE performance across all three countries. Benchmarking Lee-Carter, Baseline, XGBoost and MortFCNet

Figure 3: Test MSE for FRK25 and ITC18 regions. Benchmarking Lee-Carter, Baseline, XGBoost and MortFCNet.

Regions	MSE (×10 ⁶)				
	Lee-Carter	Baseline	XGBoost	MortFCNet	
ITC18	0.0177	0.0127	0.0084	0.0068	
FRK25	0.0077	0.0044	0.0041	0.0039	

Table 3: test MSE performance for regional case studies. Benchmarking Lee-Carter, Baseline, XGBoost and MortFCNet.

Remove anomalies & extremes; keep raw weekly averages

- XGBoost: test MSE slightly increased → needs engineered vars
- MortFCNet: test MSE decreased → automatic feature learning

Model	Training/Test Years	MSE(×10 ⁶)
XGBoost with Feature Engineering	2013-2018	0.0131
	2019	0.0138
XGBoost without Feature Engineering	2013-2018	0.0130
	2019	0.0139
MortFCNet with Feature Engineering	2013-2018	0.0123
	2019	0.0125
MortFCNet without Feature Engineering	2013-2018	0.0128
	2019	0.0123

Table 4: overall train and test MSE performance across all three countries. Benchmarking XGBoost and MortFCNet, with and without feature engineering.

Thank you

Lee, R. D., & Carter, L. R. (1992). Modeling and forecasting us mortality. Journal of the American Statistical Association, 87(419), 659–671.

Cairns, A. J., Blake, D., & Dowd, K. (2006). A two-factor model for stochastic mortality with parameter uncertainty. Journal of Risk and Insurance, 73(4), 687–718.

Nigri, A., Levantesi, S., Marino, M., Scognamiglio, S., & Perla, F. (2019). A deep learning integrated Lee–Carter model. Risks, 7(1), 33.

Chen, Y., & Khaliq, A. Q. M. (2023). Mortality rates forecasting with data driven LSTM, Bi-LSTM and GRU: The United States case study. Actuarial Research Clearing House, 2023.1.

Perla, F., Richman, R., Scognamiglio, S., & Wüthrich, M. V. (2021). Time-series forecasting of mortality rates using deep learning. Scandinavian Actuarial Journal, 2021(7), 572–598.

Wang, C. -W., Zhang, J., & Zhu, W. (2021). Neighbouring prediction for mortality. ASTIN Bulletin: The Journal of the IAA, 51(3), 689–718.

Roshani, A., Izadi, M., & Khaledi, B. (2022). Transformer self-attention network for forecasting mortality rates. Journal of the Iranian Statistical Society, 21(1), 81–103.

Wang, J., Wen, L., Xiao, L., & Wang, C. (2024). Time-series forecasting of mortality rates using Transformer. Scandinavian Actuarial Journal, 2024(2), 109–123.

European Centre for Medium-Range Weather Forecasts (ECMWF). (2023). Copernicus climate data store (cds) [Accessed: 2024-10-26]. https://cds.climate.copernicus.eu

Robben, J., Antonio, K., & Kleinow, T. (2025). The short-term association between environmental variables and mortality: Evidence from Europe. Journal of the Royal Statistical Society Series A: Statistics in Society, 2025; qnaf052.