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Introduction

+ Mortality rates are seasonal — with the highest rates occurring during winter (Marti-Soler
et al. 2014).

« External shocks, such as severe heat waves and epidemics, can lead to deviations from
these expected seasonal patterns — known as excess mortality (luliano et al. 2018, Nielsen

et al. 2011).

« Various methodologies have been proposed:
Distributed Lag (Non-Linear) Models, e.g., Schwartz (2000), Gasparrini et al. (2010)
and Guibert et al. (2024),

Extreme value analysis, e.g., bivariate POT approach in Li & Tang (2022).

- Machine learning methods, e.g., gradient boosting for the association
temperature-mortality, e.g. Robben et al. (2024).

- Jump processes for pandemics, e.g., Cox et al. (2006), Chen & Cox (2009).
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driven both by environmental and epidemic factors.

Use of several data sources to identify environmental and epidemic shocks:

. from the Copernicus Climate Data Store.
. from the French Sentinelles network (influenza anomalies).
. records from Santé Publique France to capture the COVID-19

excess mortality.

Quantify the different sources of uncertainty around the model’s estimates and forecasts,
and analyze in-sample and out-of-sample performance.

Short-term mortality forecasting based on temperature (RCP 2.6, RCP 4.5, and RCP 8.5

pathways) and influenza scenarios based on a SIRS model.
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Data sources




Death counts

Eurostat: deaths by week, sex, 5-year age group
and NUTS 2 region from France throughout the French NUTS 2 regions
years 2013-2024 (21 regions).

Focus on the age groups 65-69, ..., 90+.
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Death counts

Eurostat: deaths by week, sex, 5-year age group
and NUTS 2 region from France throughout the
years 2013-2024 (21 regions).

Focus on the age groups 65-69, ..., 90+.
Seasonal trend:

Weekly death counts
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Weather data

E-OBS land-only, gridded meteorological data for
Europe from the Copernicus Climate Data Store.

Daily, high-resolution gridded dataset, defined on
a grid with spatial resolution of 0.10° (= 11 km).
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Weather data

E-OBS land-only, gridded meteorological data for
Europe from the Copernicus Climate Data Store.

Daily, high-resolution gridded dataset, defined on
a grid with spatial resolution of 0.10° (= 11 km).

To align with the NUTS 2-level mortality data:
= Construction of population-weighted daily

temperature averages by using gridded population.

To align with the weekly time scale: hot- and
cold-week index (frequency of hot/cold days) and
weekly average of daily temperature anomalies
(severity of hot/cold days).
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Epidemic data: Influenza and COVID-19 hospitalizations

French Sentinelles Network: weekly influenza data from 1300 general practioners.
Santé Publique France: weekly COVID-19 hospitalizations.

Influenza-like illness Hospital data related to COVID-19
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Model specification and calibration




Model specification

We propose a three-state regime-switching model:
« State 0 (Baseline state) : Weekly, region-specific and age-specific baseline mortality.

» State 1 (Environmental shock state) : Deviations due to extreme temperatures.
« State 2 (Respiratory shock state) : Deviations due to influenza and COVID-19.

Deaths

2014 2016 2018 2022 2024
Date 7/17



Weekly, region- and age-specific baseline mortality model

A weekly, region and age-group-specific
baseline mortality model to capture overall
seasonal trends across all regions.
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Weekly, region- and age-specific baseline mortality model

A weekly, region and age-group-specific
baseline mortality model to capture overall
seasonal trends across all regions.
Incorporate seasonality through Fourier
terms:
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Weekly, region- and age-specific baseline mortality model

A weekly, region and age-group-specific
baseline mortality model to capture overall
seasonal trends across all regions.

Incorporate seasonality through Fourier
terms:

Dgz ~ Poisson (Eyt) ,ug:,)f) s o

" y " ) g (270 r 2mw(t
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Deaths
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Fit one Poisson GLM jointly on all regions,
and add a penalty term to obtain smooth

variations in the estimated v, , = ('Y:E?T%)TGR
across neighbouring regions.
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Modelling mortality deviations from the baseline

Explain observed deviations from the baseline deaths using region-specific environmental and
epidemiological features:

Death counts are modeled for i = 0,1, 2 by
. T
b 507 =i~ p01 (10} [(+7) ] ).

where
. SET) is a region- and time-dependent Markov chain.

« Region- and time-dependent covariate vector zy), with state- and age-specific a; ;.

Motivation: Extreme temperatures can have a larger impact on people aged 90+ compared to
those aged 65-69.
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Modelling mortality deviations from the baseline

Transition probabilities are given by

P (Zt(r);ﬁ,ur> =

exp (<,2:t(r))—r Bij + UT)

20
1+ Z exp ((zf))TB@-j/ + Ur) :

J'eT;
1

1+ ) exp ((zﬁr))T Bij + Ur>

J=0,

j'ed;

Motivation: If very high temperatures are observed at time ¢, the probability of moving to state
1 should increase. We include a spatial effect to account for regional disparities by including an

ICAR model:

U:(U1,U2,-~-7UR)NN(O’[T'(D_W)]_1>’

Calibration: Expectation-Maximization algorithm.
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Case study on 21 French NUTS 2 regions




State-Specific Poisson Model Specifications

State 1: Models impact of heatwave-related shocks:

logE [ D) | 5" =1] =logh/}+ > <ag73 TA + oA, + ol TA, +
a€ Xred

(G)H|(7") + (a)H|(7”) g (7") >]l {LB C a}

State 2: Models mortality shocks from influenza activity and COVID-19 hospitalizations:

1ogE[D;f2 | S :2] =logh{) + > ( SUAT) L+ aSOIAT, s+ alhal) o+
A€ Xyed

Q1CIT, s+ alIHATL |+ AT, ) Lo ca),
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Modelling regime transition probabilities

Assumptions: Transition probabilities are independent of age x and regional variations r are
accounted for using a spatial effect U, modelled by an ICAR process.

Transition Probabilities:

logit p}" (Z(T); Bo, ur | = Bor,0 + Por,1Hle + Uy

logit p}> ): Bo, uy = Bo2,0 + Boz, 1IA“ 1+5022HA§3 1+ U

logit p; ! ( (), ﬂhur) B11,0 + Bi,1Hl + Br12Hl—1 + Br1sHli—2 + U,
( (), ﬂz,ur) 5220+5221|A“ 1+ﬂ222|At )zt 3

+ 522,3HA§¢,1 + 52274HA£,)2¢,3 + U,

logit p

Features: Short-term features for transitions to shock states; mid-term lagged features for state

persistence: HI (hot index), IA (influenza anomaly), HA (hospital admissions).
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Results: Parameter estimates in both states

Environmental shock state Respiratory shock state
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Results: Parameter estimates in transition probabilities
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Uncertainty in in-sample predictions

Uncertainty State State + Parameter + Spatial State + Parameter + Spatial + Poisson 15 / 17



Out-of-sample backtesting - Calibration: 2013 to mid 2022

Pays de la Loire — Age group 75-79 Pays de la Loire — Age group 90+
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Conclusion

Main results

« We proposed a three-state regime-switching weekly mortality model incorportaing both the
impact of temperature and epidemic shocks on mortality.

» We quantified the uncertainty in in- and out-of-sample predictions, and examine how
different temperature and influenza scenarios influence mortality.

» Highest impact for the oldest age group and presence of harvesting effects.

Limitations and extensions

« Public Health Interventions: Adaptation measures like early-warning systems, cooling
centers, and improved healthcare access can mitigate effects.

o Future Research: Extend analysis to morbidity data for better preparedness of hospitals
and public healthcare systems.
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