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Context

= Exposure data is highly heterogeneous, and losses are heavy-tailed.

= The goal is to improve accuracy over BUhimann-Straub estimators and to obtain a probabilistic

representation of the rates.

= Bayesian hierarchical modeling is a natural framework for improving credibility estimators.
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The problem: class-specific rate estimation

B Rate
12
10
B
o
[i3]
o
B
4
EII IIIIII II |I| II
ﬂ _ 1 B
Al AD2 AD3 Ald A0S ADG ADT AQB ADS A1 Al Al2 A13 Ald Al15 AlB AT Ald A18

Class Code

cddactis

THE RISKTECH FOR INSURANCE Public Diffusion | © 2025 ADDACTIS Worldwide — All rights reserved; any reproduction without written permission from ADDACTIS Worldwide is prohibited.




Variance can be decomposed into within and among classes
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A portion of within-class variance comes from individual loss variation
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The starting point: Normal-Normal Hierarchical Model|

= Starting with a simple model for the pure rate random process

(o)

rj~N(ry, 1)

where rj; is the rate for class j in year i, centered at the class-mean T}, ej are class exposures, and r, the collective mean.

= o2 and 2 represent the variance within and between classes, respectively.

= For known variance parameters, the posterior mean is “credibility-exact”.
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Poor shrinkage and wide predictive posterior on the validation set

Payroll (100s)

-40
0
Al Anz AD3 Al4 ADS ADB AT ADs AD9 Al0 ATl Alz Al3 Ald Al5 AT Al8 Al19
Class Code
Payroll (100s) ® 2024 — Hierarchical Normal Mean 99% Hierarchical Normal -~ 85% Hierarchical Normal = = Hierarchical Normal Mear

cddactis

THE RISKTECH FOR INSURANCE

Public Diffusion | © 2025 ADDACTIS Worldwide — All rights reserved; any reproduction without written permission from ADDACTIS Worldwide is prohibited.



Shortfalls

= No distributional assumptions at individual loss level.

= There is “left skewness” at rate (aggregate loss) level.

= These lead to inaccurate credibility-weighting (low shrinkage for most classes).
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Lognormal/Poisson BHM: A simple model improvement
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Reasonable skewed predictive distributions
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Lower mean variation produces more shrinkage
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Class AO3 severity: The lognormal assumption is not as good
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N the search of a better severity assumption: Beta Prime
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Lognormal — Class Al9
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Not all nuances are captured by the new model
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Reaching new heights in Jewell's Bayesian Escalator

Jewell, W. S. (1990). Up the misty staircase with credibility theory.
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= Bayesian  modeling enables flexible,
continuous model development, with

programming languages as PyMC and Stan.

!
EXPERIENCE }' /

CONDITIONAL PROBABILITY

Figure 3 The Bayesian Escalator
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