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- Preface

The Traditional Approach Problem

GLM Framework Limitations!

P Standard models: N, ~ Poisson()\;),
Y; ~ Gamma(oy, 8;)

P Insufficient personalization - coefficients miss deeper
patterns

P Limited flexibility with policyholder dependence?

P Classic clustering (Chi-squared, K-means*) cannot capture

complexity
Core Problems

P Misclassification of loss events®
P High noise from randomness and lack of information
P Missing “cross-existence” risks between policyholders @

Wiithrich and Buser (2023); Goldburd, Khare, and Tevet (2016); Ohlsson and Johansson (2010) ISOA
2Frees (2008); Antonio and Verbelen (2023)
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The NLP Solution
The Misclassification Mathematical Problem
piy = EIXT5] # pi = E[XT)]
Where ij = misspecified peril, ng = true peril
NLP Advantage®

P “Pre-clustering via NLP” prevents misclassification

P Extract semantic context from claims text

P Capture hidden risk factors beyond structured variables
P Enable context-aware clustering for better risk profiling

ISOA

Figure 1. Eulero-Venn coefficients context -
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- How to?

Collecting the data

P> First, we need to collect the data, which can include the
following:

P the policyholder’s declaration;
P the loss adjuster’s evaluation;
P the loss data.

Figure 2: Loss Documents @
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Introducing NLP in Actuarial Analysis

From Structured to Semantic Analysis

P Classic limitations: Noise, imprecise classification, missing
textual context

P NLP breakthrough: Extract insights from claim/crash
descriptions’

Text Embeddings Advantage

P Capture semantic meaning and contextual relationships and
precise risk profiling

Domain-Specific Fine-tuning Challenge

P “Generalist” models miss insurance technical language —
Solution: Fine-tuned GPT2-Small on synthetic insurance @
Q&A pairs

- . . . ISOA
P Result: Insurance-optimized embeddings for actuarial analysis

7/34
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https://huggingface.co/ConsulStat/INSURANCE_embedder_gpt2_small
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Topic Modeling & BERTopic Framework
BERTopic: 4-Stage Process®

. Embedding Generation: Text — numerical vectors

. Dimensionality Reduction: UMAP complexity reduction®
. Clustering: HDBSCAN groups similar embeddings'®

. Topic Representation: Extract key descriptive words

AN =

Actuarial Value

P Discover recurring patterns in large document collections

P Uncover hidden risk factors not apparent from structured
variables

P> Reveal typical incident scenarios for risk quantification

8Grootendorst (2022) @

9Mclnnes, Healy, and Melville (2018) |SOA

1Mclnnes, Healy, and Astels (2017)
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BERTopic: A Powerful Approach for Large Text Volumes

P BERTopic is particularly well-suited for large datasets due to
its ability to use GPU-accelerated implementations (cuML for
UMAP and HDBSCAN), providing a 10-50x speedup!?.

BERTopic

Figure 3: BERTopic @
ISOA
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Applying BERTopic to Crash Data (NMVCCS)*

Automated Pattern Discovery

P Applied to NMVCCS textual crash descriptions and discovered
semantic patterns (topics) automatically

Key Pattern Examples

P Standard two-vehicle accidents (-1)

P> Pre-crash critical events (0)

P> Intersection left-turn collisions (2)

P> Safety-mitigated events with seatbelts (3)

Actuarial Intelligence

P Transform semantic patterns into risk profiles

P Intersection left-turn crashes: Highest risk (5.88% @
mortality)

P Pre-crash critical events: Medium-high injury risk

. 11/34
12\ ational Highwayv Traffic Safetv Administration (2008): National Highway Traffic Safetv Administration (2007) /
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From BERTopic TOpICS to Actuarial Risk

Rischio per Topic Pattern - Distribuzione CrashSeverity

pattern

Figure 4: Pattern distribution

A~ Incapacitating injury

B - Nonincapacitating injury
- Possible injury

K- Killed

No PAR obtained

0~ No injury

U~ Injury, severity unknown
Unknown if Injured

ISOA

12/34



Insurance Data Science 2025: Application of the NLP models in loss modeling for actuarial science

LApplication

From BERTopic Topics to Actuarial Risk
High-Risk Patterns Identified:

P “Vehicle — Driver — Event — Coded” shows highest fatality
rate (20.2%)

P> Intersection-related patterns consistently show elevated injury
severity

P Most patterns dominated by “possible injury” and “no injury”
outcomes

Key Observations:

P> Fatal crashes represent 5-10% across most patterns
P> Incapacitating injuries are consistently the smallest category

P> Pattern complexity suggests sophisticated crash sequence
analysis ISOA
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From BERTopic Topics to Actuarial Risk

Data Considerations:

P> Pattern distribution shows balanced representation across
scenarios

Strategic Applications:

P> Use high-severity patterns for targeted underwriting
P> Leverage pattern-specific data for actuarial modeling

ISOA
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Demographic Risk Profiling with Topic Insights
Key Findings from 1,586 Records

P High-risk groups: Males 36-45 and Males 65+ (Risk Score
1.79)

P Reveals “Volume vs. Risk Paradox” - highest risk highest
volume

Gender-Specific Patterns

P Males: Higher crash frequency
P Females: Experience higher injury severity in comparable
crashes

Actionable Insights

P Male risk pattern: Intersection Complexity (Risk Score 2.15) @
P Female risk pattern: Vehicle-Driver Critical (Risk Score 2.42) ISOA
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Demographic Risk Profiling with Topic Insights

Risk Scores by ic Profile Age Distribution by Gender
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Figure 5: Demographic considerations @
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Demographic Risk Profiling with Topic Insights

Gender Distribution by Topic Pattern (%)
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Figure 6: Demographic considerations @
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Demographic Risk Profiling with Topic Insights

Age Group Distribution by Topic Pattern (%)
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Figure 7: Demographic considerations @
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Demographic Risk Profiling with Topic Insights
Gender Distribution Insights:

P> Most patterns show 60-70% male involvement, confirming
higher male crash frequency

P “Vehicle — Driver — V2 — V1 — Lane — Critical” shows
highest male concentration (68.9%)

P Age distribution varies significantly by pattern - some skew
younger (16-25), others toward middle age (36-45)

Pattern-Specific Demographics:

P Complex intersection patterns tend to involve older drivers
(46-65+)
P Simple lane-change patterns show higher younger driver

involvement @

P Critical /traveling patterns demonstrate mixed age ISOA
distributions
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LApplication

Demographic Risk Profiling with Topic Insights
High-Risk Demographics ldentified:

P Males 36-45 and Males 65+ both score 1.79 (highest risk
categories)

P> Females consistently show lower risk scores across age groups

P Risk scores range from ~1.47 to 1.79, indicating meaningful
differentiation

Actuarial Applications:

P Volume vs. Risk Paradox: High-risk groups aren't always
highest volume
P> Gender-specific pattern targeting needed (males: frequency,

females: severity)
P> Age-based risk profiling shows clear segmentation @

opportunities for pricing ISOA
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Exploring Insights: The Interactive Dashboard

vV v v v Vv

We have translated complex data and models into actionable
actuarial insights.

These results can be explored interactively through our
dedicated Interactive Live Results Dashboard .

It offers key visualizations such as Demographic Risk
Profiling and BERTopic Topic Modeling Results

Gain deeper understanding of crash-patterns based 3D
reconstruction of the types of accident.

Features include Risk Score Heatmaps, Interactive Topic
Clustering

&
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Exploring Insights: The Interactive Dashboard

P Dashboard: Compatible with modern browsers (Chrome,
Firefox, Safari, Edge) and based on NMVCCS crash data and
insurance claims analysis.

Launch the Interactive Dashboard to explore the data:

ISOA
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Explore my code

P github.com/manuelcaccone/NLP-Actuarial-Loss-
Modeling: Compatible with modern browsers (Chrome,

Firefox, Safari, Edge) and based on NMVCCS crash data and
insurance claims analysis.

Launch the Interactive Dashboard to explore the data:

Visit the GitHub repository to view the source code and @
contribute ISOA
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Benefits of NLP-Based Approach for Actuaries

Context Enhancement

P> Extract deep insights from unstructured text beyond
structured variables

Smart Clustering

P Group claims/policyholders by semantic patterns, not just
demographics

Risk Quantification

P Link specific incident scenarios to measurable risk profiles
(severity, mortality)

Fraud Detection

P> Identify suspicious linguistic patterns and potential @
misclassifications!3 ISOA
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Thank you

Manuel Caccone

Al Task Force
Italian Society of Actuaries
manuel.caccone@gmail.com
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