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The Traditional Approach Problem
GLM Framework Limitations1

▶ Standard models: 𝑁𝑗 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑗),
𝑌𝑗 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑗, 𝛽𝑗)2

▶ Insufficient personalization - coefficients miss deeper
patterns

▶ Limited flexibility with policyholder dependence3

▶ Classic clustering (Chi-squared, K-means4) cannot capture
complexity

Core Problems
▶ Misclassification of loss events5

▶ High noise from randomness and lack of information
▶ Missing “cross-existence” risks between policyholders

1 Wüthrich and Buser (2023); Goldburd, Khare, and Tevet (2016); Ohlsson and Johansson (2010)

2 Frees (2008); Antonio and Verbelen (2023)

3 Frees (2008); Antonio and Verbelen (2023)

4 Pitkänen (1975)

5 Vandervorst, Verbeke, and Verdonck (2022); Artís, Ayuso, and Guillén (2002)
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The NLP Solution
The Misclassification Mathematical Problem
𝜇𝐹

𝑖,𝑗 = 𝔼[𝑋𝐹
𝑖,𝑗] ≠ 𝜇𝑇

𝑖,𝑗 = 𝔼[𝑋𝑇
𝑖,𝑗]

Where 𝑋𝐹
𝑖,𝑗 = misspecified peril, 𝑋𝑇

𝑖,𝑗 = true peril
NLP Advantage6

▶ “Pre-clustering via NLP” prevents misclassification
▶ Extract semantic context from claims text
▶ Capture hidden risk factors beyond structured variables
▶ Enable context-aware clustering for better risk profiling

Figure 1: Eulero-Venn coefficients context

6 Boulieris et al. (2023); Gomes, Sousa, and Lopes (2021)
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Collecting the data
▶ First, we need to collect the data, which can include the

following:
▶ the policyholder’s declaration;
▶ the loss adjuster’s evaluation;
▶ the loss data.

Figure 2: Loss Documents
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Introducing NLP in Actuarial Analysis
From Structured to Semantic Analysis

▶ Classic limitations: Noise, imprecise classification, missing
textual context

▶ NLP breakthrough: Extract insights from claim/crash
descriptions7

Text Embeddings Advantage
▶ Capture semantic meaning and contextual relationships and

precise risk profiling
Domain-Specific Fine-tuning Challenge

▶ “Generalist” models miss insurance technical language →
Solution: Fine-tuned GPT2-Small on synthetic insurance
Q&A pairs

▶ Result: Insurance-optimized embeddings for actuarial analysis
7 Devlin et al. (2018); Xu, Manathunga, and Wei (2022); Zappa, Borrelli, et al. (2021)
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Topic Modeling & BERTopic Framework
BERTopic: 4-Stage Process8

1. Embedding Generation: Text → numerical vectors
2. Dimensionality Reduction: UMAP complexity reduction9

3. Clustering: HDBSCAN groups similar embeddings10

4. Topic Representation: Extract key descriptive words

Actuarial Value

▶ Discover recurring patterns in large document collections
▶ Uncover hidden risk factors not apparent from structured

variables
▶ Reveal typical incident scenarios for risk quantification

8 Grootendorst (2022)

9 McInnes, Healy, and Melville (2018)

10 McInnes, Healy, and Astels (2017)
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BERTopic: A Powerful Approach for Large Text Volumes
▶ BERTopic is particularly well-suited for large datasets due to

its ability to use GPU-accelerated implementations (cuML for
UMAP and HDBSCAN), providing a 10-50x speedup11.

Figure 3: BERTopic

11 Allaoui, Kherfi, and Cheriet (2020); McInnes, Healy, and Melville (2018)
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Applying BERTopic to Crash Data (NMVCCS)12

Automated Pattern Discovery
▶ Applied to NMVCCS textual crash descriptions and discovered

semantic patterns (topics) automatically
Key Pattern Examples

▶ Standard two-vehicle accidents (-1)
▶ Pre-crash critical events (0)
▶ Intersection left-turn collisions (2)
▶ Safety-mitigated events with seatbelts (3)

Actuarial Intelligence
▶ Transform semantic patterns into risk profiles
▶ Intersection left-turn crashes: Highest risk (5.88%

mortality)
▶ Pre-crash critical events: Medium-high injury risk

12 National Highway Traffic Safety Administration (2008); National Highway Traffic Safety Administration (2007)
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From BERTopic Topics to Actuarial Risk

Figure 4: Pattern distribution 12 / 34
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From BERTopic Topics to Actuarial Risk
High-Risk Patterns Identified:

▶ “Vehicle → Driver → Event → Coded” shows highest fatality
rate (20.2%)

▶ Intersection-related patterns consistently show elevated injury
severity

▶ Most patterns dominated by “possible injury” and “no injury”
outcomes

Key Observations:

▶ Fatal crashes represent 5-10% across most patterns
▶ Incapacitating injuries are consistently the smallest category
▶ Pattern complexity suggests sophisticated crash sequence

analysis
13 / 34
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From BERTopic Topics to Actuarial Risk

Data Considerations:

▶ Pattern distribution shows balanced representation across
scenarios

Strategic Applications:

▶ Use high-severity patterns for targeted underwriting
▶ Leverage pattern-specific data for actuarial modeling
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Demographic Risk Profiling with Topic Insights
Key Findings from 1,586 Records

▶ High-risk groups: Males 36-45 and Males 65+ (Risk Score
1.79)

▶ Reveals “Volume vs. Risk Paradox” - highest risk � highest
volume

Gender-Specific Patterns
▶ Males: Higher crash frequency
▶ Females: Experience higher injury severity in comparable

crashes

Actionable Insights
▶ Male risk pattern: Intersection Complexity (Risk Score 2.15)
▶ Female risk pattern: Vehicle-Driver Critical (Risk Score 2.42)
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Demographic Risk Profiling with Topic Insights

Figure 5: Demographic considerations
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Demographic Risk Profiling with Topic Insights

Figure 6: Demographic considerations
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Demographic Risk Profiling with Topic Insights

Figure 7: Demographic considerations
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Demographic Risk Profiling with Topic Insights
Gender Distribution Insights:

▶ Most patterns show 60-70% male involvement, confirming
higher male crash frequency

▶ “Vehicle → Driver → V2 → V1 → Lane → Critical” shows
highest male concentration (68.9%)

▶ Age distribution varies significantly by pattern - some skew
younger (16-25), others toward middle age (36-45)

Pattern-Specific Demographics:
▶ Complex intersection patterns tend to involve older drivers

(46-65+)
▶ Simple lane-change patterns show higher younger driver

involvement
▶ Critical/traveling patterns demonstrate mixed age

distributions
19 / 34



Insurance Data Science 2025: Application of the NLP models in loss modeling for actuarial science
Application

Demographic Risk Profiling with Topic Insights
High-Risk Demographics Identified:

▶ Males 36-45 and Males 65+ both score 1.79 (highest risk
categories)

▶ Females consistently show lower risk scores across age groups
▶ Risk scores range from ~1.47 to 1.79, indicating meaningful

differentiation

Actuarial Applications:
▶ Volume vs. Risk Paradox: High-risk groups aren’t always

highest volume
▶ Gender-specific pattern targeting needed (males: frequency,

females: severity)
▶ Age-based risk profiling shows clear segmentation

opportunities for pricing
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Exploring Insights: The Interactive Dashboard

▶ We have translated complex data and models into actionable
actuarial insights.

▶ These results can be explored interactively through our
dedicated Interactive Live Results Dashboard .

▶ It offers key visualizations such as Demographic Risk
Profiling and BERTopic Topic Modeling Results

▶ Gain deeper understanding of crash-patterns based 3D
reconstruction of the types of accident.

▶ Features include Risk Score Heatmaps, Interactive Topic
Clustering
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Exploring Insights: The Interactive Dashboard

▶ Dashboard: Compatible with modern browsers (Chrome,
Firefox, Safari, Edge) and based on NMVCCS crash data and
insurance claims analysis.

Launch the Interactive Dashboard to explore the data:
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Explore my code
▶ github.com/manuelcaccone/NLP-Actuarial-Loss-

Modeling: Compatible with modern browsers (Chrome,
Firefox, Safari, Edge) and based on NMVCCS crash data and
insurance claims analysis.

Launch the Interactive Dashboard to explore the data:

� Visit the GitHub repository to view the source code and
contribute
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Benefits of NLP-Based Approach for Actuaries
Context Enhancement

▶ Extract deep insights from unstructured text beyond
structured variables

Smart Clustering
▶ Group claims/policyholders by semantic patterns, not just

demographics
Risk Quantification

▶ Link specific incident scenarios to measurable risk profiles
(severity, mortality)

Fraud Detection
▶ Identify suspicious linguistic patterns and potential

misclassifications13
13 Gomes, Sousa, and Lopes (2021); Contributors (2023) 27 / 34
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Thank you

Manuel Caccone
AI Task Force

Italian Society of Actuaries
manuel.caccone@gmail.com
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