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About This Project

This project aims to empower the actuarial profession with modern machine learning and Al tools. We provide
comprehensive teaching materials that consist of lecture notes (technical document) building the theoretical foundation of
this initiative. Each chapter of these lecture notes is supported by notebooks and slides which give teaching material, practical
guidance and applied examples. Moreover, hands-on exercises in both R and Python are provided in additional notebooks.

Lecture Notes (Technical Document)

Lecture Notes

Notebooks, Slides and Code

Chapter 1: Introduction and Preliminaries
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e Section 1: The auto-calibration property



Regression modeling

e Actuarial pricing. Find the (unknown) regression function X — p(X) that
describes the conditionally expected claim

p(X) =E[Y] X],
where X are the covariates (features) characterizing the claim (response) Y.
e Solution. For an i.i.d. learning sample £ = (Y;, X;)?_,, select the best candidate
X o fie(X) =B[Y]X].
from a pre-selected class M = {1} of candidate regression models.

e Question. Is the selected regression model 11, a suitable choice?
This depends on:

(a) the selected model class M = {u},
(b) the observed data £ = (V;, X;)"_,, and
(c) the model selection procedure.



Global unbiasedness

e Global unbiasedness of the estimated model (out-of-sample evaluation)
Elpc(X)] = E[Y].

Charged insurance premium on average covers the expected claim.
Difficult to verify because the true data generating model is unknown.

e A regression function X — Jis(X) selection procedure satisfies the balance
property if for a.e. realisation of £ = (Y;, X ;)

Y c(Xa) = ) V.
i=1 i=1

The balance property is an in-sample property that reflects a claims re-allocation.
For the balance property, see Biithimann—Gisler (2005) and Lindholm-W. (2024).



Local unbiasedness: auto-calibration

A regression function X — u(X) is auto-calibrated for (Y, X) if, a.s.,
u(X) = E[Y] u(X)].

Auto-calibration means that every price cohort p(X) is on average self-financing
for its claim Y, and there is no systematic cross-financing within the insurance
portfolio.

Auto-calibration was introduced by Schervish (1989) in the statistical literature,
and it has been popularized by Gneiting—Resin (2023), Kriiger—Ziegel (2021) and
Denuit et al. (2021).

Finding powerful tests for auto-calibration is an active field of research: Hosmer—
Lemeshow (1980), Gneiting—Resin (2023), Dimitriadis et al. (2023), Lindholm et
al. (2023), Denuit et al. (2024), Delong—W. (2024) and Delong et al. (2025).

We present additional insight on the results of Denuit et al. (2024); see W. (2025).
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Violation of auto-calibration

premium charged
average claim
premium charged
average claim
premium charged
average claim

price cohort 1 price cohort 2 price cohort 3

Price cohort 1 is subsidized by price cohort 3.



French MTPL data: network regression model

local regression (alpha=0.05)

local regression estimates (log scale)

ranking pi (log scale)

Auto-calibration violation at the boundaries. What about the general fluctuations?
.



e Section 2: Tests for auto-calibration



Finite discrete regression functions

e Assume the selected regression function y : X — R only takes finitely many
(ordered) values —oco < g < -+ < pug < 0.

e This partitions the covariate space X into K different sets with

Plu(X) = pux] =pr >0 forall 1 <k < K.

e In this finite partition case, auto-calibration of u(-) for (Y, X)) reads as

e =E Y| u(X) = ugl forall 1 <k < K.



Test statistics

e For a given i.i.d. test sample 7 = (Y;, X;)_,, consider the test statistics

=11

n

1
Sq(lk) — EZ (}/,L — ,LL(XZ)) ]I{M(Xz‘):ﬂk} for 1 S k S K.
=1

e Proposition. Under auto-calibration of pu(-) for (Y, X)

K

Vn (ngl)> e S?(FLK))T — N (O, diag (ka,f)kzl) as n — 0o,

with conditional variances 77 = Var (Y| u(X) = ug) for 1 <k < K.
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Auto-calibration tests

e Test 1. Under the null hypothesis of u(-) being auto-calibrated for (Y, X), we
have for s > 0 and n large

K
P | max +/n|S% <3] ~ (2@( ’ )—1).
LgkgK f‘ | B i V/PETE

e Often, it is beneficial to test for the maximum of the normalized quantities

50 K
< R~ — :
P [11<r}€a<XK vn o = S (20 (s) — 1)
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Test statistics

e Consider the aggregate (random walk) version, for 1 < k < K,

n k
1 .
T = EZ (Vi = (X)) Lipuixy <y = 2S5

i=1 j=1

e Corollary. Under auto-calibration of pu(-) for (Y, X)

T kAm
Vn (Tr(bl), L ,TéK)) — N |0, (Z pjsz) as n — 0o.
J=1 1<km<K
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Auto-calibration tests

e Test 2. Under the null hypothesis of 1(-) being auto-calibrated for (Y, X), we
have for s > 0 and n large

()] < g =~ <
P  max Vn|TVY| < s] P Lg}{aéXK | Z| < s],

with random walk
k

Zv=) \/DjTj¢j
j=1
for i.i.d. standard Gaussian innovations ¢; ~ N'(0,1) for 1 < j < K.

e Essentially, this reflects the finite regression version of Proposition 3.1 of Denuit
et al. (2024). In that reference, the authors have not been able to fully identify
the limiting distribution of the test statistics and a non-parametric Monte Carlo
simulation was proposed. From our results, it becomes clear that this test statistics

studies the maximum absolute value of a Brownian motion.
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