

Our Work

LSTM-based Time-varying LC Model

Mortality Data

Empirical Results

LSTM-based Coherent Mortality Forecasting for Developing Regions

Ran Xu

Department of Financial and Actuarial Mathematics Xi'an Jiaotong–Liverpool University

Insurance Data Science Conference 19 - 20 June 2025

This is a joint work with Jose Garrido and Yuxiang Shang

Ran Xu (XJTLU)

LSTM Mortality Forecasting

Presentation Overview

Our Work

LSTM-based Time-varying LC Model

Mortality Data

Empirical Results Our Work

LSTM-based Time-varying LC Model

Mortality Data

Empirical Results

Our Work

LSTM-based Time-varying LC Model

Mortality Data

Empirical Results

Our Work

Our Work

LSTM-based Time-varying LC Model

Mortality Data

Empirical Results Human Mortality Forecasting for Developing Countries/Regions

- Many developing countries/regions have experienced a rapid mortality decline over the past few decades.
- Their recent mortality development trends are **NOT** necessarily driven by the same factors as their long-term behaviours.
- We propose a **time-varying mortality forecasting model** based on the **life expectancy** and **lifespan disparity** gap between these developing countries and a selected benchmark group (developed countries).
- We use a deep neural network model with an LSTM architecture to project the life expectancy and lifespan disparity difference, which further controls the rotation of the time-varying Lee-Carter (LC) model for three developing countries.

Our Work

LSTM-based Time-varying LC Model

Mortality Data

Empirical Results

LSTM-based Time-varying LC Model

Time-Varying LC model

Our Worl

LSTM-based Time-varying LC Model

Mortality Data

Empirical Results Let the logarithm of central death rate $m_{x,t}^{j}$ for a particular developing country j at age x and year t satisfieds

$$\ln m_{x,t}^{j} = a_{x}^{j} + b_{x,t}^{j} k_{t}^{j} + \varepsilon_{x,t},$$

$$k_{t}^{j} = d_{t}^{j} + k_{t-1}^{j} + \varepsilon_{t},$$
(1)

The main differences between (1) and the classical LC method:

- the time-varying $b_{x,t}^{j}$ that measures a time-dependent age effect on mortality at different periods;
- the time-varying d_t^j describes a time-dependent drift in the random walk model used to project the period effect k_t^j .

Projection of Time-varying Factors

Our Work

LSTM-based Time-varying LC Model

Mortality Data

Empirical Results The age effect and drift terms of the period effect in the time-varying LC model are projected as

$$b_{x,t+1}^{j} = (1 - \omega_{t}^{b})\hat{b}_{x}^{j} + \omega_{t}^{b}\hat{B}_{x}$$

$$d_{t+1}^{j} = (1 - \omega_{t}^{d})\hat{d}^{j} + \omega_{t}^{d}\hat{d}_{0},$$
(2)

- \hat{b}_x^j and \hat{d}^j are the estimated LC parameters for country j;
- \hat{B}_x and \hat{d}_0 are the estimated parameters of the Li-Lee model for the benchmark group.
- The key of such a time-varying LC model is the projection of the time-varying weights ω_t^b and ω_t^d .

Projection of Time-varying Factors

Our Work

LSTM-based Time-varying LC Model

Mortality Data

Empirical Results For simplicity, let $\omega_t^d = \omega_t^b = \omega_t$, for all $t \ge T$ (*T* is the maximum time for training in the data),

$$\omega_t = \left\{ \frac{1}{2} \left(1 + \sin\left[\frac{\pi}{2} \left(2 \max\left(\frac{g_T - g_t}{g_T}, 0 \right) - 1 \right) \right] \right) \right\}^p, \tag{3}$$

where g_t is the life expectancy and lifespan disparity gap at time t between the target country/region and the benchmark group.

- ω_t increases smoothly to 1 if the life expectancy/life disparity gap decreases in the projection phase.
- $p \in [0,1]$ is a tuning parameter, we choose p = 1 such that ω_t has low rate of change close to 0 and 1.
- The life expectancy/life disparity gaps g_t are projected using a unified neural network model with LSTM architecture.

LSTM-based Mortality Forecasting Model

Our Work

Mortality Data

Empirical Results

Our Work

LSTM-based Time-varying LC Model

Mortality Data

Empirical Results

Mortality Data

Ran Xu (XJTLU)

Data Information

Our Work

LSTM-based Time-varying LC Model

Mortality Data

Empirical Results

- Benchmark group: Denmark, Finland, France, the Netherlands, Switzerland, Sweden, the U.K., the U.S., and Japan.
 - The central death rates in the one-age and one-year blocks, ages equal to 0, 1, 2, 3, ..., 97, 98, 99, and years ranging from 1950 to 2019 (remove COVID-19 effects).
 - The mortality data of developing countries/regions (e.g., Mainland China) is obtained from the United Nations population division.
 - Note that a necessary condition for the application of our method is that the life expectancy or lifespan disparity of the target countries/regions converges to the ones of the benchmark group.

Our Work

LSTM-based Time-varying LC Model

Mortality Data

Empirical Results

Empirical Results

Empirical Results for China (6-year Avg. Prediction Errors)

ur			

LS	TM-	ba	sed
Tir	ne-v	ary	
LC	Мо	de	

Mortality Data

Empirical Results

	Year	85-91	92-98	99-05	06-12	13-19	Total
MSE	LC	0.0878	0.0965	0.0854	0.0794	0.0904	0.0879
	Li-Lee	0.0202	0.0279	0.0314	0.0355	0.0509	0.0332
	LSTM-ex	0.0078	0.0214	0.0245	0.0375	0.0588	0.0301
	$LSTM ext{-disp}$	0.0055	0.0146	0.0123	0.0121	0.0179	0.0125
	LC	0.2104	0.2293	0.2129	0.2145	0.2327	0.2201
MAE	Li-Lee	0.1146	0.1312	0.1293	0.1305	0.1541	0.1321
MAE	LSTM-ex	0.0575	0.0998	0.1194	0.1565	0.2003	0.1267
	$LSTM ext{-disp}$	0.0496	0.0738	0.0681	0.0682	0.0933	0.0706
RMSE	LC	0.2481	0.2902	0.2885	0.2816	0.2888	0.2939
	Li-Lee	0.1382	0.1669	0.1732	0.1791	0.2008	0.1781
	LSTM-ex	0.0881	0.1462	0.1565	0.1935	0.2417	0.1731
	$LSTM\operatorname{-disp}$	0.0731	0.1205	0.1109	0.1082	0.1308	0.1116

Prediction Errors (in Years) for China

Our Work

LSTM-based Time-varying LC Model

Mortality Data

Empirical Results

(Females at the top, males on the bottom.)

Ran Xu (XJTLU)

Our Work

LSTM-based Time-varying LC Model

Mortality Data

Empirical Results

Thank You!

Questions?

Ran Xu (XJTLU)