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Introduction

What is Trade Credit Insurance (TCI)?

» TCI is a type of property insurance that safeguards sellers
against unexpected risks of losses from transactions when
their buyer become insolvent.

3, Risk Monitoring

6. Debt Collection
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Introduction
What’s So Special about TCI?

Dependencies among business entities (sellers and buyers)

@4 .

Network structure among entities

<2016>

<2018>

» Actuarial literature on TCI data and modeling: Empty!

» Goal: Develop statistical models to predict claim probability
for each trade connection (edge) given network structure.
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Data Overview

Proprietary TCI data from a major Asian insurance company from
2015 to 2020:
> 294,272 insured trade connections (network edges)
> 104,494 policies
> 26.4 % single-buyer
> 73.6 % multiple-buyer
> 129,915 unique businesses
> 93,663 as buyers
» 53,915 as sellers
> 17,663 in both roles
» 6,717 claims in total
» Binary claim indicator recorded for each trade connection
» 2.5 % of trade connections have 1 claim
> 5.66 % of policies have > 1 claim(s)
» Information captured per connection
> Entity profile — status, industry, age, sales
» Policy details — type, total limit, avg. turnover
» Buyer-specific limit & turnover



Methodology

Model 1: Logistic Generalized Linear Model (GLM)

» Model claim indicator Zj for trade connection k£ through a
logistic regression given the neighboring information:
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» Characteristics:
» Pull information of the associated buyer and seller as covariates
XP and X7;
» Incorporate network characteristics (e.g., degree of centrality) as
covariates.

» Limitations:

» Assume independence of claim index conditioned on observed
information;

» Ignore the influence of network structure, e.g., node importance;



Methodology

Model 2: Generalized Linear Mixed Model (GLMM)

» Model Zj given some latent variables through a logistic
regression:

ind
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» Model latent variables B;, S; and P; by normal distributions:

B;\ iid 1 p iid
(5256} 9). 52

» Characteristics:

» Buyer, seller, and policy-level latent variables capture network
dependence between adjacent trade connections.

» Limitations:
» Only capture local network dependence!
» Very computationally intensive parameter estimation!



Methodology

Model 3: Network Auto-Logistic Regression Model (NAR)

» Model directly the joint claim indicators Z across all trade

connections:
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» Characteristics:
» Capture beyond local network dependence; e.g., 2-stars effects,
2-step effects, cross-sectional effects, etc.;

» Fast computation with maximum pseudolikelihood estimation
(MPLE).



Data analysis

Prediction results: Ordered Lorenz curve

Loss Distribution

In-sample Ordered Lorenz Curve Out-of-sample Ordered Lorenz Curve
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Orange: Under GLMs; Black: Under GLMMs/NARs with

various settings

Conclusion: Predictive performance improves by modeling
network dependence structure!



