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Intro – Evolution of GLM

We begin with a basic encoding of our features, and fit a standard GLM.

Initial fit: overfit. 
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Intro – Evolution of GLM

Let’s use Lasso. 

Standard Lasso fit: Shrinks coefficients only towards the reference level.

Reference Level
Reference Level
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Intro – Evolution of GLM

For numeric and ordinal features – we use fused lasso instead.

Fused Lasso fit: works well for ordinal bins, but doesn’t solve the issue with nominals. 

Merged

Merged



© Earnix Ltd. Confidential & Proprietary.5

Intro – Evolution of GLM

Bondel and Reich proposition for nominal lasso:

However, for a practical implementation, this would require augmenting the 
design matrix quadratically.  
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Naïve Approach: Target Encoding
Simple solution: use target encoding to rank the categories, and penalize only 
adjacent bins. 

City Target

A 1

B 7

C 5

B 6

A 3

A 2

City_numeric

2

6.5

5

6.5

2

2

Penalize: |𝛽𝐶 − 𝛽𝐴|, |𝛽𝐵 − 𝛽𝐶|

Two main issues: 

1. Target Leakage (overfitting)

2. Relying on a marginal effect
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Our Solution: R2VF (Ranking to Variable Fusion)

We propose the following mechanism:
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R2VF: Benefits

Handling Overfitting: uses a regularized ranking for the categories.

Multivariate compatibility: uses the coefficients of the categories fitted with other 
predictors.

Avoiding leakage: uses a similarly structured model rather than the target itself.
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Computational Approach

We use “Split coding” for ordinal features (which is ultimately all the features, after 
applying the initial steps). 

Initial bins: (Suzuki, Mazda, Renault, Volkswagen, BMW)

 

Car Brand Car Brand

Ranked

>=1 >2 >3 >4

Suzuki 0 0 0 0 0

Mazda 1 1 0 0 0

Renault 2 1 1 0 0

Volkswagen 3 1 1 1 0

BMW 4 1 1 1 1
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Computational Approach

Apply standard lasso, and merge accordingly.

Final bins: (Suzuki, Mazda, Renault && Volkswagen, BMW)

 

Car Brand Car Brand

Ranked

>=1 >2 >3

Beta=0

>4

Suzuki 0 0 0 0 0

Mazda 1 1 0 0 0

Renault 2 1 1 0 0

Volkswagen 3 1 1 1 0

BMW 4 1 1 1 1
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Simulation
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Simulation

 

Results after the ranking step (standard Lasso for nominals, fused lasso for ordinals):
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Simulation

 

Results after the final step (full R2VF):
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Real Data Comparison 

  

Dataset: FARS (Fatality Analysis Reporting System) 2022 – predicting car accident 
deaths by vehicle properties (binary prediction – death yes/no).

 

R2VF: Our two-step regularization model

OLVF: A Fused Lasso Model with standard 
handling of nominals

No Regularization: A non-regularized model of 
the initial bins 

Catboost (Main Effects): A Catboost model 
with max depth of 1 (for a fair comparison of 
pure categorical treatment)
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Paper + AGLM Feature

For more technical details, see our paper.

 

For information about Model Accelerator, 
an Earnix extension that includes Auto-
GLM, see blog.

 

https://arxiv.org/abs/2503.01521
https://earnix.com/blog/six-use-cases-for-earnix-model-accelerator/
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Thank you! 
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