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Intro — Evolution of GLM

We begin with a basic encoding of our features, and fit a standard GLM.
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Initial fit; overfit.
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Intro — Evolution of GLM

Let's use Lasso.
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Standard Lasso fit: Shrinks coefficients only towards the reference level.
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Intro — Evolution of GLM

For numeric and ordinal features — we use fused lasso instead.

Lasso vs True Coefficients with <18 as Reference
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Fused Lasso fit;: works well for ordinal bins, but doesn’t solve the issue with nominals.
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Intro — Evolution of GLM

Bondel and Reich proposition for nominal lasso:

|NOM)|

110[11 = A E E Wiy |*313 - ."Sik|

i=1 j<ke|NOy|

However, for a practical implementation, this would require augmenting the
design matrix quadratically.
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Naive Approach: Target Encoding

Simple solution: use target encoding to rank the categories, and penalize only

adjacent bins.

Two main issues:

1. Target Leakage (overfitting)
2. Relying on a marginal effect
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Our Solution: R2VF (Ranking to Variable Fusion)

We propose the following mechanism:
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R2VF: Benefits

Handling Overfitting: uses a regularized ranking for the categories.

Multivariate compatibility: uses the coefficients of the categories fitted with other
predictors.

Avoiding leakage: uses a similarly structured model rather than the target itself.

Obtain regularized coefficients Rank Merge
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Computational Approach

We use “Split coding” for ordinal features (which is ultimately all the features, after
applying the initial steps).

Car Brand Car Brand
Ranked

Suzuki 0 0 0 0 0
Mazda 1 1 0 0 0
Renault 2 1 1 0 0
Volkswagen 3 1 1 1 0
BMW 4 1 1 1 1

Initial bins: (Suzuki, Mazda, Renault, Volkswagen, BMW)
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Computational Approach

Apply standard lasso, and merge accordingly.

Car Brand Car Brand

Ranked

Suzuki 0 0 0 0 0
Mazda 1 1 0 0 0
Renault 2 1 1 0 0
Volkswagen 3 1 1 1 0
BMW 4 1 1 1 1

Final bins: (Suzuki, Mazda, Renavult && Volkswagen, BMW)
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Simulation

City: 26 cities labeled A to Z, randomly generated such that the number of observations per city
roughly forms a linear scale (meaning, the frequency of each city varies),

Age: An average age is randomly selected per city (varies from 34 to 46), and generated with a

variability of 13.

Profession: Marked P; (where i is a number from 0 to 99), and distributed such that it has a minor
correlation with both city and age. The distribution makes some professions relatively prevalent,
some very rare, and others completely absent.
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Simulation

Results after the ranking step (standard Lasso for nominals, fused lasso for ordinals):

True Coefficients vs Ranking Step Coefficients
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Simulation

Results after the final step (full R2VF):

True Coefficients vs Final Model Coefficients
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Real Data Comparison

Dataset: FARS (Fatality Analysis Reporting System) 2022 — predicting car accident
deaths by vehicle properties (binary prediction — death yes/no).
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R2VF: Our two-step regularization model

OLVF: A Fused Lasso Model with standard
handling of nominals

No Regularization: A non-regularized model of
the initial bins

Catboost (Main Effects). A Catboost model
with max depth of 1 (for a fair comparison of
pure categorical freatment)
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Paper + AGLM Feature

For more technical details, see our paper.

For information about Model Accelerator,
an Earnix extension that includes Auto-
GLM, see blog.
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Abstract

Over recent decades, extensive research has aimed to overcome the restrictive underlying as-
sumptions required for a Generalized Linear Model to generate accurate and meaningful predic-
tions. These efforts include regularizing coefficients, selecting features, and clustering ordinal cat-
egories, among other approaches. Despite these advances, efficiently clustering nominal categories
in GLMs without incurring high computational costs remains a challenge. This paper introduces
Ranking to Variable Fusion (R2VF), a two-step method designed to efficiently fuse nominal and
ordinal categories in GLMs. By first transforming nominal features into an ordinal framework via
regularized regression and then applying variable fusion, R2VF strikes a balance between model
complexity and interpretability. We demonstrate the effectiveness of R2VF through comparisons
with other methods, highlighting its performance in addressing overfitting and identifying an ap-
propriate set of covariates.
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https://arxiv.org/abs/2503.01521
https://earnix.com/blog/six-use-cases-for-earnix-model-accelerator/

Thank you!
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