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The problem

In several situations, data {(yi , z i )}ni=1 should be modelled
according to

E (y |z i ) = f (z i )

or, more generally, to

E (y |z i ) = µi and g(µi ) = f (z i )

We will concentrate here on the univariate case, hence we will
use in the remainder z instead of z

If the ‘shape’ of f is known, it can be estimated within the
parametric framework.

The characteristics of f are identified by a finite number of
parameters and the estimation procedure takes place in a
finite dimensional space
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Splines

If f is unknown, it can be estimated in an infinite dimensional
space in the non-parametric framework or in a finite (but high)
dimensional space

By means of Taylor expansion any smooth function can be locally
approximated by a Polynomial curve

Definition: a function f : [a, b]→ R is an lth order polynomial
spline defined on the knots {tj}mj=1 such that
a = t1 ≤ · · · ≤ tm = b if:

it belongs to C(l−2)

it is a polynomial of degree l − 1 in [tj , tj+1]
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Some basic properies
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Basis Splines

Representing a spline as a linear combination of basis functions
Bj ,l , we have

f (z) ≈ f ∗(z) =
∑
j

βjBj ,l(z)

and one can estimate β via standard regression tools such as

Least Squares under the assumptions of the classical Linear
Model

Maximum Likelihood if we are in the GLM framework
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Basic B-spline properties

The set of all the lth order splines defined on the knots
t = {tj}mj=1 is the space St,l . A basis of this space is

Nj ,l(z) := (tj+l − tj)[tj , . . . , tj+l ](· − z)l−1
+ (1)

{Nj ,l}m−l
j=1 are called B-splines

Non-negative: Nj ,l(z) ≥ 0

Local support: Nj ,l(z) = 0 iff z /∈ [tj , . . . , tj+l ]

Partition of the unity:
∑m−l

j=1 Nj ,l(z) = 1
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Semiparametric Regression

If {tj}mj=1 is set ex ante, the estimation procedure takes place in a
finite dimensional parameter space and the problem becomes a
problem of Semi-Parametric regression

5 internal knots
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50 internal knots 100 internal knots

Y
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Penalized regression

In general, the higher the number of bases, the wigglier will be the
estimated curve
The issue can be addressed introducing a penalization proportional to a
measure of wiggliness in the estimating procedure
However there are some open questions

How to measure the wiggliness of a function

How to choose the penalization

Is the choice of the same penalization on the whole domain a
limitation?

The penalization can be chosen via

� visual inspection of the results

� ML-REML approaches, taking advantage of the mixed model
representation

� model selection criteria, such as GCV, AIC and UBRE

� again in the mixed model representation, but in the Bayesian
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Non-Parametrc framework I

Several procedures help in producing estimates in the fully
Non-Parametric framework

Local regression procedures, such as Loess, Kernel Smoothing,
Nearest Neighbour

Adaptive procedures

Smoothing splines (e.g. Gu, 2014)

In general all the methods in which knots are not set ex-ante and
the number of parameters of the resulting fit is not known in
advance
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Example

An example
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Control Polygon I

The shape of a spline is controlled by its Control Polygon, i.e. the
polygon whose vertices are {(ξj , βj)}pj=1 with

ξj =
tj+1 + · · ·+ tj+l−1

l − 1

Properties:

Convex hull property

The spline follows the shape of the polygon

The spline is a variation diminishing approximation to its
polygon
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Control Polygon II
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GeDS

Geometrically Designed Spline Regression is a methodology that
allows to perform spline regression in an adaptive way.
Parameters estimated by the method are:

the knot locations {tj}mj=1

the coefficients β

the order of the spline l

The algorithm is composed of two stages:

Stage A where f is estimated via a second order spline

Stage B where from the second order spline, higher order splines are
computed
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Stage A

Stage A embeds a knot addition scheme
Starting from 2 couples of boundary knots, new knots are
sequentially added
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Stage B

In Stage B, starting from the result from stage A the knot
locations for the higher order spline are computed

Quadratic Fit
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Stage B

In Stage B, starting from the result from stage A the knot
locations for the higher order spline are computed

Cubic Fit
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Comparison with existing methods I

GeDS Algorithm has been implemented in the R package GeDS

Main functions of the package are NGeDS and GGeDS that allow to
perform the regression, both in the linear and in the generalized
linear frameworks

Similar R packages that work in the same context are

mgcv, implementing the Generalized Additive Models (Wood,
2006)

ssanova, implementing smoothing splines (Gu, 2014)

SemiPar, implementing semi-parametric models (Wand, 2014)
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Comparison with existing methods II

We performed a simulation study on some test functions in order
to check whether GeDS regression performances are good
In particular:

we simulate 2000 samples of 500 Poisson distributed data,

we run GeDS regression on them and we store the number of
knots

we run regressions according to other R packages

we check the goodness of fit of the estimates according to the
L1 norm
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Comparison with existing methods III

The results seem to be quite good, however:

The goodness of fit of GeDS regression shows that there are
some outliers

The number of knots selected is quite variable

All the algorithms have some input parameters that should be
properly tuned

We simulate 30 samples with the same characteristics as before
and we tuned the parameters by hand for each of them
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An application in Claims reserving

We use a dataset containing couples (xi1, xi2)Ni=1, N = 8122, where
xi1 is the accident date and xi2 the reporting delay of the ith claim.

Unfortunately, we have:

no information about the sizes

no information about the exposures

But still we can use them in order to study IBNR claims
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Setting the problem

We partition the support in M2 squares (or rectangles) Rj ,
j = 1, . . . ,M2

Let yj be the counts of points falling in the rectangle Rj , then

yj
·∼ Poi(µj)

In order to assess the number of IBNR claims the actuary is
interested in fitting the function µ· = µ(x1, x2) and in particular to
the predictions on the lower triangle, where x2 > x1.
If one assumes also log µ(x1, x2) = α + f1(x1) + f2(x2), see e.g.
England and Verrall (2002), GeDS regression can be successfully
applied.
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Results
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Conclusions

We presented a novel approach to perform non-parametric
regression

The method can be very efficient in some cases, in particular
when the smoothness of the objective function is not
homogeneous over the whole domain

in general it needs to be ‘driven’

the methodology is implemented in an R package, that soon
will be submitted to CRAN

we presented an application in actuarial practice of claims
reserving

24 of 28



Main References I

De Boor, C. (2001). A Practical Giude to Splines. Revised
Edition. Springer–Verlag.

Dimitrova, D.S., Kaishev, V.K., Lattuada, A. and Verrall, R.J.
(2017). Geometrically Designed Variable Knot Splines in
Generalized (Non-)Linear Models. Submitted

England, P.D., and Verrall, R.J. (2002). Stochastic claims
reserving in general insurance. BAJ, 8(3), 443–518.

Gu, C. (2014). Smoothing Spline ANOVA Models: R Package
gss. Journal of Statistical Software, 58(5), 1–25.

25 of 28



Main References II

Hastie, T.J. and Tibshirani, R.J. (1990). Generalized Additive
Models. Chapman & Hall, London

Wand, M.P. (2014). SemiPar: Semiparametic Regression. R
package version 1.0-4.1. URL
http://CRAN.R-project.org/package=SemiPar.

Wood, S.N. (2006). Generalized Additive Models: An
Introduction with R. Chapman & Hall/CRC Press.

26 of 28


	The general problem
	Semiparametric Regression
	Non-parametric Regression

	Further B-splines properties
	Control Polygon

	GeDS
	Claims Reserving
	References

