Textual Analysis of Expert Reports to increase knowledge of Technological Risks

Julie Seguela

https://gitlab.com/jseguela/r_in_insurance_2017

R in Insurance - 8 june 2017
My background

- Master degree in Statistics and Econometrics - *Toulouse School of Economics*
- PhD in Applied Statistics and Machine Learning - *Conservatoire National des Arts et Métiers*
- Statistician who has evolved to a data scientist
- Interests: R, web and textual data, machine learning, high performance computing
- 8 years working with R and a growing interest
- **Covea**: French mutualist group formed with 3 insurance companies (GMF, MAAF, MMA) http://www.covea.eu/
Text Mining in Insurance

- Insurers hold several sources of textual data:
 - Comments from advisers during telephone exchanges
 - Customers’ comments from satisfaction surveys
 - Claims narratives (-> second talk in Big Data session)
 - Expert reports:
 - about individual claims
 - about business claims (-> this talk)

- Several projects are in progress at Covea

- This talk is about expert reports which describe circumstances, causes and consequences of technological accidents in several industries
Purpose of this work/PoC

- Extract useful information from expert reports in order to increase our knowledge of technological accidents
- Identify frequent types of events and their causes if they are known
- Highlight good R packages for text analysis and visualization
- Expert reports come from open source data, why?
 - Projects at Covea are still in progress and results not yet communicable...
 - Working with open data: anyone can access, use or share
 - Useful if no or few historical claims data available internally
- This code can be shared to interested people
- Open data + open code insure the reproducibility of the study
Data source description

- **ARIA** database (Analysis, Research and Information on Accidents)
 http://www.aria.developpement-durable.gouv.fr/?lang=en
- Published by BARPI (analysis office at the Ministry of sustainable development)
- Database:
 - 30,000 accidents which have occurred mainly in France since 1995
 - Susceptible to damage public health or safety, or environment
 - Reports written by civil protection or environment inspection
 - Inventory is not exhaustive but significant, and almost all accidents relative to major risks are registered
Example of an expert report

In a sawmill subject to declaration, a fire ignites at 20:30 at the level of 2 sheds of wood storage of 500 m². Local residents give the alarm. Firemen protect neighboring buildings. They extinguish the fire around 3:45. The 2 hangars and 1 000 m³ of finished products are destroyed. The damage is estimated at EUR 600 000. 5 employees are unemployed. However, the production tool is spared. The site was shut down for 3 days after the fire broke out. An act of malevolence could be the cause of the fire.

- **Pros:**
 - *no ambiguity, only facts are detailed*
 - *reports are well written, with very few spelling mistakes*
 - *normalised wording*

- **Cons:**
 - *texts can be very long as well as very short*
 - *technical vocabulary*
Dataset description: list of variables

- 28,260 accidents
- Variables:
 - identifier of accidents
 - date of accident
 - french department
 - french city
 - industry type
 - text of the report

N°47930 - 18/04/2016 - FRANCE - 24 - COULOUNIEIX-CHAMIERS
D35.22 - Distribution de combustibles gazeux par conduites
Vers 9h50, une fuite de gaz naturel se produit suite à l'arrachement d'une conduite de distribution à 4 bars lors de travaux de voirie. La fuite se produit au niveau de voies ferrées. Le trafic ferroviaire est interrompu sur deux voies pendant 1h20. Un périmètre de sécurité de 100 m est mis en place ; 45 personnes sont évacuées. Les services du gaz stoppent la fuite par écrasement de la conduite. La circulation est rétablie après que les mesures d'explosimétrie se révèlent négatives.
Dataset description: accidents over time

```
acc <- readRDS("data/acc.rds")
g <- ggplot(aes(x = YEAR), data = acc) + geom_bar(aes(fill = Industry), color = "white") + theme(legend.position = "right")
ggplotly(g)
```
library(leaflet)
city.freq <- acc %>%% filter(!is.na(CITY)) %>%% group_by(CITY_CODE, CITY, long, lat) %>%% summarize(freq = n())
m <- leaflet() %>% addTiles() %>% addCircleMarkers(lng=city.freq$long, lat=city.freq$lat,
 popup = paste(city.freq$CITY, ": ", city.freq$freq),
 radius = city.freq$freq/8, weight = 1)
m # Print the map
Text mining techniques allows to extract useful information from these unstructured data.

It relies on:

- Bag-of-words model, or representation in vectors of features created according to some defined rules
- Data mining techniques applied to these now structured data
A bit of vocabulary

- **Document**: a generic term to name the analysed unit. In our case, the analysed unit is a text, but it could also be images or videos.

- **Corpus**: a set of documents grouped together for analysis. These documents must be sufficiently numerous, written in the same language and deal with the same field.

- **Terms**: all different words found in the corpus.

- **Tokens**: lexical units obtained after splitting texts according to a defined rule (in general, the words of the text)
Supervised vs Unsupervised

- We must distinguish *supervised* learning from *unsupervised* learning
 - *Document categorization with categories known a priori is a supervised task (classification)*
 - *Document clustering with no a priori information is an unsupervised task*

- Our work corresponds to the second case
Keep in mind limitations

- Except in some particular cases, text mining still requires significant human intervention
 - text cleaning according to the business field
 - parameters to be adjusted according to the studied corpus
 - analysis and interpretation of results

- For all unsupervised text mining applications, result validation is mainly subjective (when truth is not known \textit{a priori}, no quantitative measure to assess performance)

- With \textit{bag-of-words} representation, the order of words in a sentence is lost (but co-occurrences are kept)

- Since text mining relies on statistical techniques, at least hundreds of texts are needed to get interpretable results

- The more heterogeneous the texts in the Corpus, the more difficult the analysis
Concept of the Long Tail

- Once document texts are cut into words, the distribution of term frequency is similar to the famous “long tail”

- A minority of terms (the most common in the language) represent a big part of total occurrences, while a very large number of terms will have few or only one occurrence

- Purpose of preprocessing (in addition to cleaning and removing noise) is to:
 - reduce the total number of distinct terms
 - increase frequency of each term (by grouping) to increase analysis robustness and detection of rare themes
Document lengths according to industry

```r
acc$doc_length <- nchar(acc$doc)
p <- ggplot(aes(x=Industry, y=doc_length, fill=Industry), data=acc) + geom_boxplot() + coord_flip() + theme(legend.position="none", plot.margin=unit(c(1,1,1,1), "cm")) + xlab("") + ylab("Number of characters")
ggplotly(p)
```
Corpus creation

With the `tm` package, the first step is to create a Corpus object:

```
library(tm)
MyCorpus <- VCorpus(VectorSource(acc$doc), readerControl = list(language = "fr"))
names(MyCorpus) <- acc$ID
# First document
content(MyCorpus[[1]])
```

[1] “Un incendie se déclare dans un bâtiment d’une entreprise spécialisée dans la récupération de vieilles palettes. Une heure de lutte est nécessaire pour maîtriser le sinistre s’étendant sur 500 m² détruisant un stock de palettes, des machines, 1 500 l de fioul et des bouteilles de gaz. La grande quantité de palettes entourant le bâtiment a pu être préservée. Une reprise de feu 7 heures après, pendant le nettoyage du hangar par les employés de l’entreprise, est rapidement maîtrisée.”
Then, we apply some basic transformations to normalize texts, for example:

```r
# to lowercase
MyCorpus <- tm_map(MyCorpus, content_transformer(tolower))

# remove accents
MyCorpus <- tm_map(MyCorpus, content_transformer(function(x) chartr("àâéêëîïôöûùü","aaeeeiioouu", x)))

# remove punctuation
MyCorpus <- tm_map(MyCorpus, content_transformer(
  function(x) gsub("[^[:alnum:][:space:]%€]", " ", x)
))

# recode costs
MyCorpus <- tm_map(MyCorpus, content_transformer(
  function(x) gsub("([[:digit:]]+([[:space:]]*)+(€|(euro)|(euros))", "_euro_", x)
))
```

We also uniformise times, areas, volumes, distances, digits...
Term-Document Matrix creation (1/2)

```r
TDM <- TermDocumentMatrix(MyCorpus, control = list(removePunctuation = F, stopwords = F, 
    wordlengths = c(1, Inf)))
```

```r
TDM

## <<TermDocumentMatrix (terms: 29475, documents: 28260)>>
## Non-/sparse entries: 1556868/831406632
## Sparsity             : 100%
## Maximal term length: 35
## Weighting            : term frequency (tf)
```

```r
# The longest term
Terms(TDM)[which.max(nchar(Terms(TDM)))]
```

[1] "paratrichloromethylphenylisocyanate"

```r
grep("paratrichlorométhylphénylisocyanate", acc$doc)
```

[1] 23966
Term-Document Matrix creation (2/2)

Little extract of TDM before removing terms:

```r
as.matrix(TDM[which(apply(TDM[,1:5],1,sum)>0), 1:5][1:15,])
```

<table>
<thead>
<tr>
<th>Terms</th>
<th>Docs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>339076</td>
</tr>
<tr>
<td>area</td>
<td>1</td>
</tr>
<tr>
<td>digit</td>
<td>1</td>
</tr>
<tr>
<td>dist</td>
<td>0</td>
</tr>
<tr>
<td>time</td>
<td>0</td>
</tr>
<tr>
<td>volume</td>
<td>1</td>
</tr>
<tr>
<td>4eme</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>absence</td>
<td>0</td>
</tr>
<tr>
<td>acceptable</td>
<td>0</td>
</tr>
<tr>
<td>active</td>
<td>0</td>
</tr>
<tr>
<td>aerent</td>
<td>0</td>
</tr>
<tr>
<td>agissait</td>
<td>0</td>
</tr>
<tr>
<td>agrochimique</td>
<td>0</td>
</tr>
<tr>
<td>air</td>
<td>0</td>
</tr>
<tr>
<td>alerte</td>
<td>0</td>
</tr>
</tbody>
</table>
Some statistics before we do significant transformations on the corpus:

```r
# Term frequencies
term.freq <- data.frame(term = rownames(TDM), frequency = slam::row_sums(TDM)) %>% arrange(desc(frequency))

p <- ggplot(term.freq[1:1000, ], aes(x=seq_along(frequency), y=frequency, colour=term)) +
  geom_point(size = 0.5) + theme(legend.position="none", plot.margin=unit(c(1,1,1,1), "cm"))

ggplotly(p, tooltip = c("colour", "y"))

round(sum(term.freq$frequency[1:30])/sum(term.freq$frequency), 2)

[1] 0.48
```
Removing stopwords (1/2)

- We remove the most common words in french language, these are named *stopwords*
- We add a personal list of frequent and useless words in this corpus

```r
head(stopwords("en"), 10)  # illustration with english stopwords
## [1] "i" "me" "my" "myself" "we"
## [6] "our" "ours" "ourselves" "you" "your"

# additional words to remove
            "aussi", "ainsi", "tous", "tout", "toutes", "toute", "min", "elles", "elle", "ils", "selon",
            "afin", "dort", "tres", "deja", "enfin", "jusqu", "ni", "ne", "autour", "avant", "apres",
            "quelques", "encore", "matin", "nom", "alors", "peu", "pu", "cependant", "peut", "donc",
            "faire", "etre", "situe", "pensant", ".digit_", ".time_", ".euro_", "suite", "lors", "sous")

# my stopword list
mystopwords <- union(stopwords("fr"), to_add)
# same transformations as applied on documents
mystopwords <- chartr("àâéèêëîïôöûùü", "aaeeeeiiooouuu", tolower(mystopwords))
MyCorpus <- tm_map(MyCorpus, stripWhitespace)
```
Removing stopwords (2/2)

```r
TDM <- TermDocumentMatrix(MyCorpus, control = list(removePunctuation = F, stopwords = mystopwords, 
                           wordlengths = c(1, Inf)))

as.matrix(TDM[which(apply(TDM[,1:5],1,sum)>0), 1:5][1:15,])
```

```
##            Docs
## Terms       339076 31878 679195  1 480690
## _area_      1 0   0   0   0
## _dist_      0 0   0   0   1
## _volume_    1 0   1   0   0
## 4eme        0 1   0   0   0
## absence     0 1   0   0   0
## acceptable  0 0   0   1   0
## active      0 0   0   1   0
## aerent      0 0   0   0   1
## agissait    0 1   0   0   0
## agrochimique 0 0   0   1   0
## air         0 0   0   3   0
## alerte      0 0   0   1   0
## alimentations 0 1   0   0   0
## amiant     0 0   0   1   0
## analyses   0 0   0   1   0
```
Lemmatization (1/2)

- **tm** package provides access to stemming but it is not appropriate to French language.
- We prefer to apply *lemmatization*, which is more relevant:
 - conjugated verbs put to infinitive
 - plural form put to singular form
 - feminine form put to masculine form
- use of *TreeTagger*
- efficient because reports are written carefully by experts
- package *koRpus* and *treetag()* function

After install of *Perl* and *TreeTagger*:

```r
tagged.text <- treetag(file.path, treetagger="manual", lang="fr", encoding = "UTF-8",
                         TT.options=list(path="C:/TreeTagger", preset="fr-utf8"))
```
Lemmatization is a long process, so we have built a fixed dictionary to transform each term into its lemma:

```r
dic <- readRDS("data/dic_lemm.rds")

tdm_words <- data.frame(token = rownames(TDM), order = 1:nrow(TDM), stringsAsFactors = F)

tdm_words <- merge(tdm_words, dic, by = "token", all.x = T, sort = F)

# Transforming to Lemmas
TDMlm <- slam::rollup(TDM, 1, tdm_words$lemma)
```

The number of distinct terms has now decreased a lot:

```
## <<TermDocumentMatrix (terms: 18706, documents: 28260)>>
## Non-/sparse entries: 999195/527632365
## Sparsity            : 100%
## Maximal term length: 35
```
Removing sparse terms

- At this time, TDM is still very sparse...
- Since we will use statistical techniques, we choose to remove terms with less than 20 occurrences:

```r
freq.min <- 20
sparsity <- 1-freq.min/ncol(TDMlm)
TDMlm <- removeSparseTerms(TDMlm, sparse = sparsity); TDMlm
```

```
## <<TermDocumentMatrix (terms: 3791, documents: 28260)>>
## Non-/sparse entries: 949490/106184170
## Sparsity          : 99%
## Maximal term length: 17
```

- Sparsity is still very high... but the number of distinct terms has drastically decreased! (in accordance with the principle of the long tail)

```r
term.freq <- data.frame(term = rownames(TDMlm), frequency = slam::row_sums(TDMlm)) %>% arrange(desc(frequency))
round(sum(term.freq$frequency[1:30])/sum(term.freq$frequency), 2)
```

[1] 0.18
First wordcloud

After translation to English, we obtain this first wordcloud:

```r
library(wordcloud)
wordcloud(words = term.freq$term.en, freq = term.freq$frequency, max.words = 100,
          random.order = F, random.color = T, colors = brewer.pal(8,"Dark2"), scale = c(4, 0.5))
```
Specific terms

- When an illustrative variable is available to describe documents, we can use it to identify *specific terms* of each category.
- These terms are often more relevant than high-frequency based terms to characterize the corpus.
- *Specific terms* are terms which are *over-represented* on a category compared to what could be expected with a uniform distribution.
- Two options:
 - `specificTerms()` function in the *RcmdrPlugin.temis* package, relying on a statistical test based on hypergeometric distribution.
 - `comparison.cloud()` function in the *wordcloud* package (next slide).
- In our case, we will extract specific terms of each *industry*.
Comparison Cloud (1/2)

- `comparison.cloud()` function in the `worcloud` package compares the frequencies of words across documents:
 - Let \(p_{i,j} \) be the rate at which word \(i \) occurs in document \(j \), and \(p_i \) be the average across documents: \(\sum_j p_{i,j}/ndocs \)
 - The size of each word is mapped to its maximum deviation: \(\max_j(p_{i,j} - p_i) \)
 - Its angular position is determined by the document where that maximum occurs.

- For each industry, we will paste all documents into a single one in order to compare industries:

```r
freqInd

# Matrix agregated by category
comp.matrix <- slam::rollup(TOMlm[, which(acc$Industry %in% freqInd)], 2, 
  acc$Industry[which(acc$Industry %in% freqInd)])
comp.matrix <- as.matrix(comp.matrix)
```
Comparison Cloud (2/2)

```r
comparison.cloud(comp.matrix, max.words=150, random.order=FALSE, title.size = 1.2, scale = c(4, 0.5))
```
Commonality Cloud

We can also look at the cloud of words shared across industries:

```r
commonality.cloud(comp.matrix, max.words=100, random.order=FALSE, scale = c(4, 0.5),
                  colors = colorRampPalette(c("grey","black"))(40))
```

size is correlated to the minimum frequency across industries
Co-occurrence network (1/2)

- **visNetwork** package

- Terms are represented by **nodes**:
 - size is proportional to the number of documents where the term occurs
 - a term does not appear under a fixed threshold
 - term is affected with a color to the industry where it has the highest specificity score

- Relations between terms are represented by **edges**:
 - width is proportional to the Jaccard similarity between the two terms
 - an edge does not appear under a fixed threshold
source("D:/dt/Documents/R projects/rFunctions/textmining/plot_words.R")
plot.words(TDMlmt, nodeMinFreq = 2400, edgeMinSim = 0.18, df.group = word.ind)
Topic Modeling

- Topic modeling refers to algorithms which allow to discover the main “topics” (themes) in a large collection of documents.
- It provides a quick way to perform *unsupervised classification* on documents.
- Key assumptions: *bag of words* concept and documents are not ordered.
- The *Latent Dirichlet Allocation* model (2) is a Bayesian mixture model for discrete data where topics are assumed to be uncorrelated.
- The *Correlated Topics Model* (3) is an extension of the original LDA model where correlations between topics are allowed: that we will use.
Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—How many genes does an organism need to survive? Last week at the annual meeting of the American Society for Microbiology, two genome researchers with radically different approaches presented complementary views of the basic genes needed for life.

One research team, using computer models to compare known genes, concluded that today’s organisms can be sustained with just 550 genes and that the earliest life forms required a mere 125 genes. The other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job—but that anything short of 800 wouldn’t be enough.

Although the numbers don’t match precisely, those predictions are not all that far apart, especially in comparison to the 75,000 genes in the human genome, notes Andrew Szewczyk of Cornell University’s School of Integrative Biology in Ithaca. But coming up with a figure for any new “ground zero” may be more than just a matter of numbers. Szewczyk, for example, notes that more genes we’ve sequenced are also more complex, sequenced. “It may be a way of organisms running on more complex genetic information,” he speculates.

Adapted by Michael Mushinski, a computational molecular biologist at the National Center for Biotechnology Information (NCBI) in Bethesda, Maryland. Comparing the number of genes in different organisms, researchers have also found that complexity appears to be correlated. For example, the nematode Caenorhabditis elegans, with 20,000 genes, is simpler in terms of its genome compared to the human genome, with 60,000 genes.

STRIPPING DOWN. Computer analysis yields an estimate of the minimum modern and ancient genomes.
Perplexity is often used to evaluate the models on held-out data.

Perplexity for a test set of documents d_t is given by (4):

$$Perplexity(d_t) = \exp\left(-\frac{\log(p(d_t))}{\text{count of tokens}}\right)$$

where $\log(p(d_t))$ is the likelihood of unseen documents.

The lower the perplexity, the “better” the model.
k, the number of topics that the algorithm use to classify documents has to be fixed *a priori*: the main difficulty of these algorithms

One option is to minimise *perplexity* by cross validation, but it does not systematically give a semantically meaningful choice of k

From a practical point of view, we can simply run the algorithm for different values of k and make a choice by inspecting the results

Topic models have successfully been applied to article databases to identify similar articles and group articles by theme as part of search engine queries

However, the topic model fit does not return an actual *topic* (term/phrase) on the basis of documents that are clustered together: it must be determined *subjectively* by the analyst
CTM: first attempt (1/2)

We will choose the number of topics k according to *perplexity* score on a test sample:

```r
DTMlm <- weightTf(as.DocumentTermMatrix(TDMlm))
# Removing empty documents from DTM
DTMnz <- DTMlm[which(slam::row_sums(DTMlm) > 0), ]

# for the choice of k relatively to perplexity score
set.seed(1110)
test.ind <- sample(1:nrow(DTMnz), round(0.2*nrow(DTMnz)))
DTMlearn <- DTMnz[-test.ind, ]
DTMtest <- DTMnz[test.ind, ]

library(topicmodels)
SEED <- 1110
df.perp.1 <- data.frame()
for (K in c(2,5,10)){
  assign(paste0("CTM_", K), CTM(DTMlearn, k = K,
  control = list(seed = SEED, var = list(tol = 10^-4), em = list(tol = 10^-3))))
  CTM_temp <- eval(parse(text = paste0("CTM_", K)))

  # Perplexity
  perp <- perplexity(CTM_temp, DTMtest)
df.perp.1 <- rbind(df.perp.1, data.frame(k = K, perplexity = perp))

  # Ten most frequent terms for each topic
  assign(paste0("CTM_", K, ".terms"), terms(CTM_temp, 5))
}
```
CTM: first attempt (2/2)

Topics keywords

CTM_2.terms

Topic 1 Topic 2
[1,] "eau" "incendie"
[2,] "feu" "pompier"
[3,] "exploitant" "_volume_
[4,] "securite" "fuite"
[5,] "site" "declarer"

CTM_5.terms

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
[1,] "exploitant" "declarer" "eau" "feu" "_volume_
[2,] "effectuer" "pompier" "incendie" "batiment" "pompier"
[3,] "place" "incendie" "feu" "gaz" "incendie"
[4,] "feu" "fuite" "pompier" "fuite" "evacuer"
[5,] "eau" "_area_" "intervention" "site" "gaz"

CTM_10.terms

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
[1,] "exploitant" "pompier" "eau" "site" "unite"
[2,] "vanne" "incendie" "silo" "installation" "accident"
[3,] "operateur" "eteindre" "site" "usine" "usine"
[4,] "pression" "fumee" "cellule" "exploitant" "declencher"
[5,] "incident" "secours" "dechet" "local" "installation"

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
[1,] "incendie" "exploitant" "eau" "fuite" "produire"
[2,] "feu" "electrique" "_volume_" "gaz" "pompier"
[3,] "declarer" "pompier" "pollution" "citerne" "origine"
[4,] "_area_" "installation" "polluer" "securite" "_dist_
[5,] "batiment" "entreprise" "_dist_" "perimetre" "explosion"
- The same keywords appear in almost all the topics - these are very frequent words
CTM: TF-IDF filtering (1/2)

We have previously filtered sparse words, but we will also filter words with a low TF-IDF:

```
term.tfidf <- tapply(DTMnz$v/row_sums(DTMnz)[DTMnz$i, DTMnz$j, mean] * log2(nDocs(DTMnz)/col_sums(DTMnz > 0))

# TF-IDF distribution
quantile(term.tfidf, probs = seq(0,1,0.1))
```

```
##            0%         10%         20%         30%         40%         50%         60%         70% 
## 0.04844971 0.10241991 0.11880383 0.13563971 0.15248231 0.17181121 0.19219844 0.21726000 
##         80%         90%        100%  
## 0.25672846 0.33215346 1.93718632
```

```
# TF-IDF cutting
DTMtfidf <- DTMnz[, term.tfidf > 0.13]
DTMtfidf <- DTMtfidf[which(slam::row_sums(DTMtfidf) > 0),]

# for the choice of k relatively to perplexity score
set.seed(1110)
test.ind <- sample(1:nrow(DTMtfidf), round(0.2*nrow(DTMtfidf)))
DTMtfidf_learn <- DTMtfidf[-test.ind,]
DTMtfidf_test <- DTMtfidf[test.ind,]
```
CTM: TF-IDF filtering (2/2)

df.perp <- data.frame()
for (K in c(2, 5, 8, 12, 15, 20, 30)) {
 assign(paste0("CTM_tfidf_", K), CTM(DTMTfidf_learn, k = K,
 control = list(seed = SEED, var = list(tol = 10^-4), em = list(tol = 10^-3))))
 CTM_temp <- eval(parse(text = paste0("CTM_tfidf_", K)))
 # Probability of assignment to the most likely topic
 assign(paste0("CTM_tfidf_", K, ".probs"), apply(posterior(CTM_temp)$topics, 1, function(x) x[which.max(x)]))
 # Perplexity
 perp <- perplexity(CTM_temp, DTMTfidf_test)
 df.perp <- rbind(df.perp, data.frame(k = K, perplexity = perp))
}
CTM: perplexity according to the number of topics

```r
p <- ggplot(df.perp, aes(x = k, y = perplexity)) + geom_point(colour = I("blue")) + geom_line(colour = I("blue")) + theme(plot.margin = unit(c(1,1,1,1), "cm"))
ggplotly(p)
```
CTM: proba of assignment to the most likely topic

```r
ndocs <- length(CTM_tfidf_2.probs)
probs <- data.frame(CTM = rep(c("1. CTM 2 topics", "2. CTM 8 topics", "3. CTM 12 topics", "4. CTM 15 topics", "5. CTM 30 topics"), each = ndocs),
                    prob = c(CTM_tfidf_2.probs, CTM_tfidf_8.probs, CTM_tfidf_12.probs, CTM_tfidf_15.probs, CTM_tfidf_30.probs))

# comparing densities according to the number of topics

# g <- qplot(x = prob, data = probs, geom = "density", col = CTM, facets = . ~ CTM)
ggplotly(g)
```
CTM: proba distribution according to the topic (1/2)

Choice of the number of topics
CTM_final <- CTM(DTMtfidf, k = 15, control = list(seed = SEED, var = list(tol = 10^-4), em = list(tol = 10^-3)))
CTM_final.topics <- topics(CTM_final, 1)
table(CTM_final.topics)

CTM_final.topics
1 2 3 4 5 6 8 9 10 11 12 13 14
3144 2243 6 756 2 3073 2374 39 9241 1342 4809 4 1209

CTM_final.probs <- apply(posterior(CTM_final)$topics, 1, function(x) x[which.max(x)])

df.topic <- data.frame(topic = as.character(CTM_final.topics),
 ID = as.numeric(names(CTM_final.topics)),
 prob = CTM_final.probs)
CTM: proba distribution according to the topic (2/2)

compare proba distribution between topics
p <- ggplot(aes(x=topic, y=prob, fill=topic), data=df.topic) + geom_boxplot(width = 0.5) +
 coord_flip() + theme(legend.position = "none", plot.margin = unit(c(1,1,1,1), "cm")) + xlab("")
 ggplotly(p)
library(D3partitionR)
D3partitionR(data = treemap_list, type="treeMap", width = 1100,
 labelStyle = "font-size: 11pt","
 tooltipOptions = list(showAbsolutePercent=FALSE,showRelativePercent=FALSE))

 TRUE FALSE FALSE
most representative documents for selected topics

```r
library(DT)
datatable(doc.repr[, c("lab", "prob", "doc.en")], options = list(lengthMenu = c(2, 4, 6)))
```

<table>
<thead>
<tr>
<th>lab</th>
<th>prob</th>
<th>doc.en</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck accident</td>
<td>0.96</td>
<td>At about 1700 hours, a Belgian tanker carrying 23,000 liters of cobalt chloride spilled at PK 214 on the A28 in the direction of Le Havre-Bassens, terminating its course on the emergency stopband and the ditch. The unscrupulous driver calls for help. The tank has a slight leak at a manhole. The gendarmes, 19 firemen and 2 employees of the motorway operator intervene. Traffic on the North-South pavement is deflected, a safety perimeter is set up and absorbent is spread to recover the product. The accident vehicle is deposited in a tank of the carrier from Belgium. The truck is then raised. Traffic is restored on one lane at 7:15 am and totally at 10:30 am. The inattention of the driver is at the origin of the accident internal formation of his drivers.</td>
</tr>
<tr>
<td>Truck accident</td>
<td>0.95</td>
<td>A tanker transporting 6 t of liquefied propane reverses itself at 9 am on its delivery route in a ditch on the D 21 road. A slight leak is observed on a bridle. At 09:15, the driver temporarily clogs the leak with water and a rag. A safety perimeter of 150 m is established and the gendarmes stop traffic at 10:10 am for 4 hours. Relief clogs the leak with a plug of ice. The truck is picked up at 2:20 pm with 2 cranes and, after explosive measurements, is allowed to return to its loading site where it will be degassed. The driver was traveling at 10 km / h on a sloping road with an icy roadway. The vehicle slipped on an ice sheet and departed towards the edge of the road.</td>
</tr>
</tbody>
</table>
CTM: topic distribution per industry

```r
ind.topic.freq <- doc.topic %>% filter(Industry %in% freqInd) %>%
group_by(topic, Industry) %>% summarize(freq = n()) %>%
as.data.frame()

g <- ggplot(aes(x = Industry, y = freq), data = ind.topic.freq) +
  geom_bar(aes(fill = topic), color = "white", stat = "Identity") +
  coord_flip() + theme(plot.margin = unit(c(1,1,1,1), "cm")==>

ggplotly(g)
```
CTM: topics over French territory

```r
m <- leaflet() %>%
  addTiles() %>% # Add default OpenStreetMap map tiles
  addCircleMarkers(lng=city.topic.freq$long, lat=city.topic.freq$lat, 
                  popup = paste(city.topic.freq$CITY, " : ", city.topic.freq$freq, 
                               radius = city.topic.freq$freq/2, weight = 1, color = city.topic.freq$color) %>%
  addLegend("bottomright", colors = c("red", "cyan", "black", "blue"), 
             labels = c("Truck accident", "Chemical leaking", "Gas leak", "River pollution"))

m # Print the map
```
Causes analysis: preprocessing

- To analyse precisely the events that have been the causes of these accidents, we will create a new corpus:

 - *For the sake of clarity, we reduce the perimeter to Manufacturing industry*

 - *We cut reports into sentences thanks to annotate() function in NLP package*

 - *After examining the reports, we extract sentences relative to causes thanks to regular expressions:*

 - sentence contains *cause*

 - sentence contains *origin*

 - sentence contains *due to*

 - etc.

- We then apply same preprocessing as applied on full reports corpus (except that we lower min frequency threshold from 20 to 10)
Causes analysis: co-occurrence network

```
plot.words(TDMclmt, nodeMinFreq = 180, edgeMinSim = 0.07)
```
Causes analysis: clustering

- We use *spherical k-means* (5) to perform clustering on documents:

```r
library(skmeans)
set.seed(1110)
SKMEANS <- skmeans(coord.doc.fr, k = 100)

# sizes of clusters
p <- ggplot(as.data.frame(table(SKMEANS$cluster)), aes(x="", y=Freq)) + geom_boxplot() + coord_flip()
ggplotly(p)
```

Add clusters to initial data
causes.clus <- merge(df.causes,
 data.frame(id_sent = names(SKMEANS$cluster), cluster = SKMEANS$cluster),
 by = "id_sent", sort = F)
```
Causes analysis: presentation of few clusters

We present here some of the causes we identified thanks to the clustering:

```r
Comparative cloud
causes.matrix <- slam::rollup(TDMclmt, 2, causes.clus$cluster.lab, na.rm = T)
causes.matrix <- as.matrix(causes.matrix)
comparison.cloud(causes.matrix[, clus], max.words=80, random.order=FALSE,

 title.size = 1.5, colors=c(brewer.pal(8,"Dark2")), scale=c(2.5,0.5))
```
Causes analysis: over French territory

m <- leaflet() %>% # Add default OpenStreetMap map tiles
  addTiles() %>% # Add default OpenStreetMap map tiles
  addCircleMarkers(lng = city.cause.freq$long, lat = city.cause.freq$lat, 
      popup = paste(city.cause.freq$CITY, " ", city.cause.freq$freq),
      radius = city.cause.freq$freq*2, weight = 1, color = city.cause.freq$color) %>%
  addLegend("bottomright", colors = c("red", "purple", "black"),
      labels = c('Criminal origin', 'Equipment corrosion', 'Storms'))

m # Print the map
R packages and their interactions

- **tm**: Corpus, VCorpus(), PCorpus(), DirSource(), SimpleSource(), DataframeSource(), VectorSource(), TermDocumentMatrix(), DocumentTermMatrix(), plot()

- **base**: data.frame, vector, as.matrix(), matrix, read.table()

- **topicmodels**: LDA(), CTM(), LDA, CTM

- **wordcloud**: wordcloud(), comparison.cloud(), wordcloud(), plot, comparison(), plot

- **skmeans**: skmeans(), skmeans()

- **proxy**: dist()

- **stats**: hclust(), hclust

- **LSAspace**: LSA()

- **external source**
Conclusion

- We have described our corpus of expert reports.
- We have explored its content with topic modeling to obtain a clustering of accidents.
- We have then been into further detail with a clustering of causes.
- The results of this POC are convincing.
- After these analyses, we could for example:
  - create indicators to describe risks and their causes in each type of industry, over the territory.
  - quantify each cause and cross it with known costs to imagine new prevention services that could interest companies.
- Now it’s your turn to try on your corpus!
1. Latent Semantic Analysis

2. Latent Dirichlet Allocation

3. Correlated Topics Model

4. Perplexity

5. Spherical Kmeans
   • Dhillon IS, Modha DS (2001). Concept Decompositions for Large Sparse Text Data Using Clustering. Machine Learning, 42(1)
Thank you for your attention!