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Smartphone Federated Learning Pipeline

A) your phone personalises the
model locally depending on your

usage;
24 B) many users’ updates are
A. aggregated;

C) the aggregated updates form a
consensus change to the shared

model; and
D) the shared models are
updated.
Figure 2: Google Federated Learning N
%SBS Institute
Google Al Blog: Federated Learning: Collaborative Machine Learning without Centralized Training Data ;{%% a?iFtacu!ty
(9oogleblog.com) Lamss® of Actuaries



https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

Insurance Federated Learning Pipeline

Federated learning pipeline.
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Need to encrypt parameters but maintain the average
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Insurance Federated Learning Pipeline

data/freMTPL2freq.

df = pd.read_csv('..

df
v/ 0.5s

IDpol
1.0
3.0
5.0

10.0
11.0

678008 6114326.0
678009 6114327.0
678010 6114328.0
678011 6114329.0
678012 6114330.0

678013 rows x 12 columns
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ClaimNb

1

Exposure Area VehPower

0.10000
0.77000
0.75000
0.09000
0.84000

0.00274
0.00274
0.00274
0.00274
0.00274

D

D
B
B
B

5

5
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VehAge DrivAge BonusMalus

0
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55
52
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50
50
50
50
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VehBrand
B12
B12
B12
B12
B12

VehGas
Regular
Regular
Diesel
Diesel

Diesel

Regular
Regular

Diesel
Regular

Diesel

Density Region
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1217
54
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R22
R72
R72

Institute
and Faculty
of Actuaries




Neural Network Model Setup

Table 2. Neural Network Architecture used in all 3 Scenarios

Hyperparameter Selection
Input neurons 39 based on the preprocessing done in Section sz
Hidden Layers 2
Output Layer 1 output neuron with exponential link function (to ensure only positive fre-
quencies are predicted)
Optimiser NAdam
Activation Function tanh
Loss Function Negative Poisson Log Likelihood
Initialisation Xavier
Epochs 300
Table 3. Hyperparameter Search Space Considered in all 3 Scenarios
Hyperparameter Search Space
Learning Rate [0.001, 0.002, 0.01]
Number neurons in Hidden Layer 1 [5, 10, 15, 20]
Number neurons in Hidden Layer 2 [5, 10, 15, 20]
Batch Size [500, 1,000, 5,000, 10,000]
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Global Model Scenario — 10 insurers, 1 models

Insurer 0 Insurer 1 Insurer 2 ‘ . ‘ Insurer 9

Share and pool

sensitive data Central
together Data Store
mm Sharing is Caring :
v
» Everyone trusts each other and sends their private
data to a central body to collate together

« Central body builds model for everyone and then

sends back to companies g
« A.k.a. 1 “Global” model as it uses all the data and ,; i/ i‘ '”Sctjitlgte "
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Partial Model Scenario — 10 insurers, 10 models

Insurer O Insurer 1

Insurer 2

‘ ‘ ‘ Insurer 9

& & s eee I

Each insurer builds their own model

just using their data

* No one trusts anyone
* Low volume of data used to build models which could be
more relevant to company although may not be credible

» A.k.a. 10 “Partial” models as each company's model only
has partial access to the whole market data
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If you could share data
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Federated Model Scenario — 10 insurers, 1 model

mm United Federation”

» Everyone keeps their 10t of their data to themselves
* However they securely share their parameters with
central body

 Central body securely averages all the insurer’s
parameters and shares back

* Bringing the model to the data rather than bringing the

data to the model qg Insti
. . N7, nstitute
* A.k.a. 1 “Federated” model ;; %\ and Faculty
b of Actuaries
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Comparison of results
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Comparison of results
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Comparison of results
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What’s the catch?

—#—- Federated Model
#- Global Model
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Expressions of individual views by members of the Institute and Faculty of Actuaries and its staff
are encouraged.

The views expressed in this presentation are those of the presenter.

Institute
and Faculty
of Actuaries

15



