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1 Introduction - Synthetic data

What?

> Fake, generated data made to resemble the original, real
data

Why?

> Rise in data driven methods for modeling

P> But: limited data available due to privacy and ethics concerns

» No private information in synthetic data = data can be shared
How?

P Traditionally: scenario generators with assumptions

> Recently: Machine learning, generative models

> Generative model learns underlying distribution from real data

» Sample from learned distribution to create synthetic data
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2  Background - Simulating claims reserving data

» Individual Claims History Simulation Machine (Gabrielli and
Withrich, 2018)
® Uses 35 neural networks, used over 8 sequential steps
® Trained on data, but requires several assumptions
® Performs well for Chain-ladder reserving method

» SynthETIC (Avanzi et al., 2021)

® Uses 8 modules
e Offers flexibility to the user
® Several distributional assumptions where the user can change

parameters



2 Goal

» One model, trained in one go

» Data driven, make assumptions as lenient as possible
> Model should be easily adaptable to new datasets

» Quality of data should be close to original data



2

Goal

» One model, trained in one go

» Data driven, make assumptions as lenient as possible
> Model should be easily adaptable to new datasets

» Quality of data should be close to original data

= G(enerative) A(dversarial) N(etwork) with causal structure
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3 Model - GAN

X train [ sample

> fake/real

probability

Random

Noise z —Pp G

sample

» G(enerator) en D(iscriminator) = 2 neural networks

» Generator and Discriminator compete against each other
(adversarial)

> Goal: generator maps random noise to real data distribution
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Model - GAN

X train [ sample

fake/real
» probability

Random

Noise z —Pp G

sample

Generator generates a random sample to "fool” Discriminator

Discriminator tries to distinguish real from generated
samples

Discriminator gives feedback to Generator (Through a loss
function)

Generator performs better = Discriminator performs better =
Generator performs better, etc.
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3 Model - Causal framework

P The generator is typically one neural network

» Instead, we use a framework from Causal-TGAN (Wen et al.,
2021)

® Small neural network for each variable, following the causal
structure
® All small neural networks make up one big neural network

» Partial or no causal graph is also possible

» Shown to perform better than non-causal counterpart
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3 Model - Distributions

» Data transformation from CTGAN (Xu et al., 2019)
> Discrete distributions
® One-hot encoding
® All categories are sampled evenly during training period
» Continuous distributions
® Variational Gaussian mixture (VGM) model for each column

® Each marginal distribution gets represented as a mixture of
Gaussian distributions

m n2 ns

> A value gets transformed to an indicator and a normalised value
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4 Data

» 1 million samples from simulator of Gabrielli and Wiithrich

Name Notation
Age age
Claims code cc
Accident year AY
Accident quarter AQ

Injured part inj_part

Reporting delay | RepDel
Payment P;
Open status 0;

» Payments and open status for i € 0, 1,..., 11 years



4 Data - Long tailed distributions

» Long tailed distributions are not captured as well with VGM
» Log-transformation of the columns with long-tails (Payments)
» Resulting distribution is more closely-packed together

> = better representation by VGM



Data - Causal structure

RepDel

C; represents the claim payment and open status in year i
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Results - Discrete
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Results - Continuous
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Results - Continuo
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» Payments in the first and second year are well reconstructed

» Payments in third year are more sparse = worse reconstruction
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Results - Continuous
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» Payments in the first and second year are well reconstructed

» Payments in third year are more sparse = worse reconstruction

» Small difference in log transformed distribution can mean big
difference when transformed back
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5 Results - Payments

Statistic | Real data | Synthetic data
15¢ year

No claim payments 16.93% 17.20%
Average payment 2294.83 2437.02
Median payment 276.0 271.0

Largest payment (10°) 9.60 3.14
2" year

No claim payments 71.41% 72.32%
Average payment 4529.45 6377.70
Median payment 432.0 488.0

Largest payment (10°) 12.83 11.33
Total (summed over 12 years)

No claim payments 0.62% 1.29%
Average payment 4346.33 4652.30
Median payment 313.0 319.0

Largest payment (10°) 31.7 38.9
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Conclusion

» One model, trained in one go
® Generator is one neural network
» Data driven, make assumptions as lenient as possible
® Assumption 1: distribution can be represented by a Gaussian
Mixture
® Assumption 2: causal graph (optional)
> Model should be easily adaptable to new datasets
® User only needs to provide data and specify long-tailed variables
® Causal graph is optional
> Quality of data should be close to original data

® Does generally well
® Sparse data is generalised at a lower quality



Thank you for your attention!

Contact: yves-cedric.bauwelinckx@kuleuven.be
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