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1 Introduction - Synthetic data

What?
▶ Fake, generated data made to resemble the original, real

data

Why?
▶ Rise in data driven methods for modeling
▶ But: limited data available due to privacy and ethics concerns
▶ No private information in synthetic data ⇒ data can be shared

How?
▶ Traditionally: scenario generators with assumptions
▶ Recently: Machine learning, generative models
▶ Generative model learns underlying distribution from real data
▶ Sample from learned distribution to create synthetic data
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2 Background - Synthetic data in insurance

▶ Synthetic data for various types of data in insurance
• Simulation of driver telematics (So, Bouchez and Valdez, 2021)
• Simulation of insurance fraud network data (Campo and Antonio,

2023)

▶ Generative AI in insurance
• Generative Synthesis of Insurance Datasets (Kuo, 2020)
• Synthesizing Property & Casualty Ratemaking Datasets using

Generative Adversarial Networks (Côté et al. 2020)
• Variational autoencoder for synthetic insurance data (Jamotton

and Hainaut, 2023)
▶ Individual claim generators

• Individual Claims History Simulation Machine (Gabrielli and
Wüthrich, 2018)

• SynthETIC (Avanzi et al., 2021)
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2 Background - Simulating claims reserving data

▶ Individual Claims History Simulation Machine (Gabrielli and
Wüthrich, 2018)

• Uses 35 neural networks, used over 8 sequential steps
• Trained on data, but requires several assumptions
• Performs well for Chain-ladder reserving method

▶ SynthETIC (Avanzi et al., 2021)
• Uses 8 modules
• Offers flexibility to the user
• Several distributional assumptions where the user can change

parameters
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2 Goal

▶ One model, trained in one go
▶ Data driven, make assumptions as lenient as possible
▶ Model should be easily adaptable to new datasets
▶ Quality of data should be close to original data

⇒ G(enerative) A(dversarial) N(etwork) with causal structure
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3 Model - GAN

▶ G(enerator) en D(iscriminator) ⇒ 2 neural networks
▶ Generator and Discriminator compete against each other

(adversarial)
▶ Goal: generator maps random noise to real data distribution



3 Model - GAN

▶ Generator generates a random sample to ”fool” Discriminator
▶ Discriminator tries to distinguish real from generated

samples
▶ Discriminator gives feedback to Generator (Through a loss

function)
▶ Generator performs better ⇒ Discriminator performs better ⇒

Generator performs better, etc.



3 Model - Causal framework

▶ The generator is typically one neural network
▶ Instead, we use a framework from Causal-TGAN (Wen et al.,

2021)
• Small neural network for each variable, following the causal

structure
• All small neural networks make up one big neural network

▶ Partial or no causal graph is also possible
▶ Shown to perform better than non-causal counterpart
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3 Model - Distributions

▶ Data transformation from CTGAN (Xu et al., 2019)
▶ Discrete distributions

• One-hot encoding
• All categories are sampled evenly during training period

▶ Continuous distributions
• Variational Gaussian mixture (VGM) model for each column
• Each marginal distribution gets represented as a mixture of

Gaussian distributions

▶ A value gets transformed to an indicator and a normalised value
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4 Data

▶ 1 million samples from simulator of Gabrielli and Wüthrich

Name Notation
Age age

Claims code cc
Accident year AY

Accident quarter AQ
Injured part inj part

Reporting delay RepDel
Payment Pi

Open status Oi

▶ Payments and open status for i ∈ 0, 1,..., 11 years



4 Data - Long tailed distributions

▶ Long tailed distributions are not captured as well with VGM
▶ Log-transformation of the columns with long-tails (Payments)
▶ Resulting distribution is more closely-packed together
▶ ⇒ better representation by VGM



4 Data - Causal structure

▶ Ci represents the claim payment and open status in year i
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5 Results - Discrete

▶ Discrete distributions are reconstructed very well
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▶ Continuous distributions are reconstructed well



5 Results - Continuous

▶ Distribution of the non-zero claims

▶ Payments in the first and second year are well reconstructed
▶ Payments in third year are more sparse ⇒ worse reconstruction
▶ Small difference in log transformed distribution can mean big

difference when transformed back
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5 Results - Payments

Statistic Real data Synthetic data
1st year

No claim payments 16.93% 17.20%
Average payment 2294.83 2437.02
Median payment 276.0 271.0

Largest payment (106) 9.60 3.14

2nd year
No claim payments 71.41% 72.32%
Average payment 4529.45 6377.70
Median payment 432.0 488.0

Largest payment (106) 12.83 11.33
Total (summed over 12 years)

No claim payments 0.62% 1.29%
Average payment 4346.33 4652.30
Median payment 313.0 319.0

Largest payment (106) 31.7 38.9
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6 Conclusion

▶ One model, trained in one go
• Generator is one neural network

▶ Data driven, make assumptions as lenient as possible
• Assumption 1: distribution can be represented by a Gaussian

Mixture
• Assumption 2: causal graph (optional)

▶ Model should be easily adaptable to new datasets
• User only needs to provide data and specify long-tailed variables
• Causal graph is optional

▶ Quality of data should be close to original data
• Does generally well
• Sparse data is generalised at a lower quality
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Thank you for your attention!

Contact: yves-cedric.bauwelinckx@kuleuven.be
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