

Generating individual claims using generative adversarial networks

Yves-Cédric Bauwelinckx with E.J. Menvouta, T. Verdonck and J. Dhaene KU Leuven

0 Outline

1 Introduction

2 Background

- **3** The model
- 4 Data

1 Outline

1 Introduction

2 Background

- **3** The model
- 4 Data
- 6 Results
- 6 Conclusion

1 Introduction - Synthetic data

What?

Fake, generated data made to resemble the original, real data

1 Introduction - Synthetic data

What?

Fake, generated data made to resemble the original, real data

Why?

- Rise in data driven methods for modeling
- But: limited data available due to privacy and ethics concerns
- \blacktriangleright No private information in synthetic data \Rightarrow data can be shared

1 Introduction - Synthetic data

What?

Fake, generated data made to resemble the original, real data

Why?

- Rise in data driven methods for modeling
- But: limited data available due to privacy and ethics concerns
- \blacktriangleright No private information in synthetic data \Rightarrow data can be shared How?
 - Traditionally: scenario generators with assumptions
 - Recently: Machine learning, generative models
 - Generative model learns underlying distribution from real data
 - Sample from learned distribution to create synthetic data

2 Outline

Introduction

2 Background

- **3** The model
- 4 Data
- 6 Results
- 6 Conclusion

2 Background - Synthetic data in insurance

- Synthetic data for various types of data in insurance
 - Simulation of driver telematics (So, Bouchez and Valdez, 2021)
 - Simulation of insurance fraud network data (Campo and Antonio, 2023)

2 Background - Synthetic data in insurance

- Synthetic data for various types of data in insurance
 - Simulation of driver telematics (So, Bouchez and Valdez, 2021)
 - Simulation of insurance fraud network data (Campo and Antonio, 2023)
- Generative AI in insurance
 - Generative Synthesis of Insurance Datasets (Kuo, 2020)
 - Synthesizing Property & Casualty Ratemaking Datasets using Generative Adversarial Networks (Côté et al. 2020)
 - Variational autoencoder for synthetic insurance data (Jamotton and Hainaut, 2023)

2 Background - Synthetic data in insurance

- Synthetic data for various types of data in insurance
 - Simulation of driver telematics (So, Bouchez and Valdez, 2021)
 - Simulation of insurance fraud network data (Campo and Antonio, 2023)
- Generative AI in insurance
 - Generative Synthesis of Insurance Datasets (Kuo, 2020)
 - Synthesizing Property & Casualty Ratemaking Datasets using Generative Adversarial Networks (Côté et al. 2020)
 - Variational autoencoder for synthetic insurance data (Jamotton and Hainaut, 2023)
- Individual claim generators
 - Individual Claims History Simulation Machine (Gabrielli and Wüthrich, 2018)
 - SynthETIC (Avanzi et al., 2021)

- 2 Background Simulating claims reserving data
 - Individual Claims History Simulation Machine (Gabrielli and Wüthrich, 2018)
 - Uses 35 neural networks, used over 8 sequential steps
 - Trained on data, but requires several assumptions
 - Performs well for Chain-ladder reserving method

- 2 Background Simulating claims reserving data
 - Individual Claims History Simulation Machine (Gabrielli and Wüthrich, 2018)
 - Uses 35 neural networks, used over 8 sequential steps
 - Trained on data, but requires several assumptions
 - Performs well for Chain-ladder reserving method
 - SynthETIC (Avanzi et al., 2021)
 - Uses 8 modules
 - Offers flexibility to the user
 - Several distributional assumptions where the user can change parameters

2 Goal

- One model, trained in one go
- Data driven, make assumptions as lenient as possible
- Model should be easily adaptable to new datasets
- Quality of data should be close to original data

2 Goal

- One model, trained in one go
- Data driven, make assumptions as lenient as possible
- Model should be easily adaptable to new datasets
- Quality of data should be close to original data

 \Rightarrow G(enerative) A(dversarial) N(etwork) with causal structure

3 Outline

- Introduction
- 2 Background
- **3** The model
- 4 Data
- **6** Results
- 6 Conclusion

3 Model - GAN

- G(enerator) en D(iscriminator) \Rightarrow 2 neural networks
- Generator and Discriminator compete against each other (adversarial)
- Goal: generator maps random noise to real data distribution

3 Model - GAN

- Generator generates a random sample to "fool" Discriminator
- Discriminator tries to distinguish real from generated samples
- Discriminator gives feedback to Generator (Through a loss function)
- ► Generator performs better ⇒ Discriminator performs better ⇒ Generator performs better, etc.

- The generator is typically one neural network
- Instead, we use a framework from Causal-TGAN (Wen et al., 2021)
 - Small neural network for each variable, following the causal structure
 - All small neural networks make up one big neural network

- The generator is typically one neural network
- Instead, we use a framework from Causal-TGAN (Wen et al., 2021)
 - Small neural network for each variable, following the causal structure
 - All small neural networks make up one big neural network

- The generator is typically one neural network
- Instead, we use a framework from Causal-TGAN (Wen et al., 2021)
 - Small neural network for each variable, following the causal structure
 - All small neural networks make up one big neural network

- The generator is typically one neural network
- Instead, we use a framework from Causal-TGAN (Wen et al., 2021)
 - Small neural network for each variable, following the causal structure
 - All small neural networks make up one big neural network

- Partial or no causal graph is also possible
- Shown to perform better than non-causal counterpart

3 Model - Distributions

- Data transformation from CTGAN (Xu et al., 2019)
- Discrete distributions
 - One-hot encoding
 - All categories are sampled evenly during training period

3 Model - Distributions

- Data transformation from CTGAN (Xu et al., 2019)
- Discrete distributions
 - One-hot encoding
 - All categories are sampled evenly during training period
- Continuous distributions
 - Variational Gaussian mixture (VGM) model for each column
 - Each marginal distribution gets represented as a mixture of Gaussian distributions

3 Model - Distributions

- Data transformation from CTGAN (Xu et al., 2019)
- Discrete distributions
 - One-hot encoding
 - All categories are sampled evenly during training period
- Continuous distributions
 - Variational Gaussian mixture (VGM) model for each column
 - Each marginal distribution gets represented as a mixture of Gaussian distributions

A value gets transformed to an indicator and a normalised value

4 Outline

- Introduction
- 2 Background
- **3** The model
- 4 Data
- **6** Results
- 6 Conclusion

4 Data

1 million samples from simulator of Gabrielli and Wüthrich

Name	Notation
Age	age
Claims code	сс
Accident year	AY
Accident quarter	AQ
Injured part	inj₋part
Reporting delay	RepDel
Payment	P_i
Open status	O_i

 \blacktriangleright Payments and open status for i \in 0, 1,..., 11 years

4 Data - Long tailed distributions

- Long tailed distributions are not captured as well with VGM
- Log-transformation of the columns with long-tails (Payments)
- Resulting distribution is more closely-packed together
- \blacktriangleright \Rightarrow better representation by VGM

4 Data - Causal structure

 \triangleright C_i represents the claim payment and open status in year i

5 Outline

- Introduction
- 2 Background
- **3** The model
- 4 Data

5 Results - Discrete

Discrete distributions are reconstructed very well

Continuous distributions are reconstructed well

Distribution of the non-zero claims

Distribution of the non-zero claims

- Payments in the first and second year are well reconstructed
- Payments in third year are more sparse \Rightarrow worse reconstruction

Distribution of the non-zero claims

- Payments in the first and second year are well reconstructed
- ▶ Payments in third year are more sparse ⇒ worse reconstruction
- Small difference in log transformed distribution can mean big difference when transformed back

5 Results - Payments

Statistic	Real data	Synthetic data
1^{st} year		
No claim payments	16.93%	17.20%
Average payment	2294.83	2437.02
Median payment	276.0	271.0
Largest payment (10^6)	9.60	3.14

5 Results - Payments

Statistic	Real data	Synthetic data
1^{st} year		
No claim payments	16.93%	17.20%
Average payment	2294.83	2437.02
Median payment	276.0	271.0
Largest payment (10^6)	9.60	3.14
2 nd year		
No claim payments	71.41%	72.32%
Average payment	4529.45	6377.70
Median payment	432.0	488.0
Largest payment (10^6)	12.83	11.33

5 Results - Payments

Statistic	Real data	Synthetic data
1^{st} year		
No claim payments	16.93%	17.20%
Average payment	2294.83	2437.02
Median payment	276.0	271.0
Largest payment (10^6)	9.60	3.14
2 nd year		
No claim payments	71.41%	72.32%
Average payment	4529.45	6377.70
Median payment	432.0	488.0
Largest payment (10^6)	12.83	11.33
Total (summed over 12 years)		
No claim payments	0.62%	1.29%
Average payment	4346.33	4652.30
Median payment	313.0	319.0
Largest payment (10^6)	31.7	38.9

6 Outline

- Introduction
- 2 Background
- **3** The model
- 4 Data
- **6** Results

- One model, trained in one go
 - Generator is one neural network

- One model, trained in one go
 - Generator is one neural network
- Data driven, make assumptions as lenient as possible
 - Assumption 1: distribution can be represented by a Gaussian Mixture
 - Assumption 2: causal graph (optional)

- One model, trained in one go
 - Generator is one neural network
- Data driven, make assumptions as lenient as possible
 - Assumption 1: distribution can be represented by a Gaussian Mixture
 - Assumption 2: causal graph (optional)
- Model should be easily adaptable to new datasets
 - User only needs to provide data and specify long-tailed variables
 - Causal graph is optional

- One model, trained in one go
 - Generator is one neural network
- Data driven, make assumptions as lenient as possible
 - Assumption 1: distribution can be represented by a Gaussian Mixture
 - Assumption 2: causal graph (optional)
- Model should be easily adaptable to new datasets
 - User only needs to provide data and specify long-tailed variables
 - Causal graph is optional
- Quality of data should be close to original data
 - Does generally well
 - Sparse data is generalised at a lower quality

Thank you for your attention!

Contact: yves-cedric.bauwelinckx@kuleuven.be