Quantification of climate change risk in insurance IDSC, Stockholm

Efrén Hernández Domínguez Management Solutions 17/06/2024

www.managementsolutions.com

1 Scenarios to derive the impact of climate change risk

Given the uncertainty in the ambition of climate policies and greenhouse gas emissions, it is necessary to make use of climate scenarios to stimate the impacts in insurance portfolios:

- Without significant policy action, levels of physical risks will increase substantially, especially over longer time horizons.
- A climate policy that seeks to mitigate these physical risks may have significant economic impacts on certain sectors of activity and thus a high transition risk.
- The time horizon, stringency and anticipation of climate policies determine the level of disruption to the economy.
- From a risk management perspective, climate policies can be understood as a trade-off between long-term physical risk and short-term transient risk.

\square

The literature is converging on the use of **NGFS scenarios** for projecting transition risks, and **IPCC scenarios** for physical risks.

*EIOPA requires for climate risk assessment in ORSA at least one scenario with a projected temperature of +2°C, and one scenario below this threshold (preferably a temperature increase of no more than 1.5°C).

2 General framework of measurement

The following methodological scheme has been taken into account for the measurement of both transition and physical climate risk impact:

3 Link between scenarios and variables

In order to measure the impact of climate change risk, economic, energy and climate information is needed in a forward looking perspective in different scenarios to obtain the CLIMATE SHOCK.

4 Rationale for each methodology

Depending on the type of portfolio, the measurement of the impact of physical risks and transition risks applies a different methodology, commonly differentiating between the investment portfolio, real estate and insurance portfolio.

	Investment Portfolio	Real estate	Non-life insurance portfolio	Life insurance portfolio
31Cal 113N3	Measuring the impact of risks associated with weather events affecting the properties of issuers in which we hold financial instruments.	Measurement of the impact of risks associated with weather events affecting property owned by the insurer.	Measurement of the impact of the risks associated with climatic events affecting claims in the different lines of business of the entity.	Measuring the impact of temperature change on human health and hence mortality
	Metric: Impact on market value of financial instruments	Metric: Impact on market value of properties	Metric: Impact on claims incurred	Metric: Impact on reserves (mortality table shock)
	Measuring the impact of risks associated with economic and social changes that may affect the issuers in which we hold financial instruments.	Measuring the impact of risks associated with economic and social changes that may affect the value of the insurer's real estate.	Measuring the impact of risks associated with economic and social changes that may affect the premiums of the insurance portfolio.	Measuring the impact of risks associated with PM2.5 particles affecting human health and hence mortality.
8	Metric: Impact on market value of financial instruments	Metric: Impact on market value of properties	Metric: Revenue impact per premiums	Metric: Impact on reserves (mortality table shock)

5 Transition Scenarios - NGFS

NGFS scenarios framework: from Phase III to Phase IV

- Net Zero 2050: limit global warming to 1.5°C through stringent climate policies and innovation, achieving net zero global CO2 emissions by 2050 (US, EU, UK, Canada, Australia and Japan achieve net zero emissions for all greenhouse gases).
- Delayed Transition: assumes that annual emissions do not decrease until 2030. Strong policies are needed to limit warming to below °2C.
- NDCs: includes all promised targets, even if they are not yet backed by effective policies.

Image source: NGS: ngfs_climate_scenarios_for_central_banks_and_supervisors_phase_iv

Management Solutions Making things happen

5 Physical Risk Scenarios - IPCC

The IPCC, the leading authority on climate issues, regularly provides assessments of climate change, its impacts, future risks and options for mitigation and adaptation.

RCP

Representative concentration pathways (RCPs) describe different **greenhouse gas** (GHG) **emission and concentration trajectories over** the 21st century for climate modelling and impact and adaptation assessment.

The **IPCC Fifth Assessment Report** used **4** emission **scenarios** with a total radiative forcing (RF) for the year 2100 ranging from 2.6 to 8.5 W/m^2 .

	RF	RF trend	CO ₂ in 2100
RCP 2.6	2.6 W/m2	Decreasing in 2100	421 ppm
RCP 4.5	4.5 W/m2	Stable in 2100	538 ppm
RCP 6.0	6.0 W/m2	Growing in 2100	670 ppm
RCP 8.5	8.5 W/m2	Growing in 2100	936 ppm

The combination of the different socio-economic futures (SSPs) and the different emission and concentration futures (RCPs) gives rise to the new scenarios used in the IPCC Sixth Assessment Report.

Multiple SSP scenarios have been generated, combining socio-economic narratives and greenhouse gas emissions, but the following **5 scenarios** are the **most commonly used**:

SSP

Shared socio-economic trajectories (SSPs) describe **alternative futures of socio**economic development throughout the 21st century and what challenges these changes pose for mitigation and adaptation.

The **Sixth IPCC Report** uses the **5 SSP narratives**, with different socio-economic mitigation and adaptation challenges, in combination with the RCPs

	Mitigation challenges	Adaptation challenges
SSP 1	Low	Low
SSP 2	Medium	Medium
SSP 3	High	High
SSP 4	Low	High
SSP 5	Low	High

The approach applied to calculate the shocks is to calculate them against a baseline scenario (using current policies), a methodology widely used by the industry and referred to by regulators such as EIOPA⁷.

The shock with baseline for the scenario in year "y" to be assessed is as follows:

$$Shock_{Baseline y} = \frac{Shock_{Projected scenario y}}{Shock_{Current policies y}} - 1$$

7 Data - climate-loss databases

Understanding and accurately modeling climate change requires comprehensive climate catastrophe data, as it provides crucial insights into the frequency, intensity, and impacts of extreme weather events, enabling more precise predictions

EM-DAT contains data the on occurrence and impacts of over 26.000 mass disasters worldwide from 1900 to the present day. The database is compiled from various sources, including UN agencies, organizations. non-governmental reinsurance companies, research institutes, and press agencies. The Centre for Research on the Epidemiology of Disasters (CRED) distributes the data in open access for non-commercial use.

The DRMKC Risk Data Hub is a multi-hazard Geo-portal designed to bridge science and policy across different scales, facilitating collaboration between scientists and end-users.

The project is comprised by potential data sources modules:

- Disaster Loss Data
- Vulnerability to disasters
- Disaster Risk Curated European-wide risk data

The <u>Catastrophe Data Hub</u> brings together data related to natural catastrophes. It presents the data in two different views:

- Insured exposure view: it indicates the insured exposure to flood and windstorm of residential and commercial buildings
- Insured losses view: it shows the incurred for buildings reported by the insurance undertakings or groups in the sample. It covers three types of events: a flood event, a wildfire and a windstorm.

Data – climate projections

opernicus

The Climate Data Store from Copernicus is freely available and functions as a one-stop shop to explore climate data.

- CMIP6 Climate projections \geq
- Agroclimatic indicators from 1951 to 2099
- Water level change indicators (WLCI) \geq
- Fire danger indicators for Europe (FWI) \geq
- Climatic suitability for the presence and seasonal \geq activity of the Aedes albopictus mosquito for Europe derived from climate projections

EUROPEAN COMMISSION

The Joint Research Centre (JRC) aims to develop knowledge and tools in support of the EU Climate Change Policy.

- > High resolution SPEI monthly projection for the globe (1975-2100)
- Rate of change of frost-free period map for Europe 1975-2010
- > Bias corrected high resolution temperature and precipitation projection for Europe

European Environment Agency

EEA's Datahub contains quality-assure and quality-check data on a wide set of topics and legislation related to the environment, climate and sustainability:

- Pollution \geq Soil
- \triangleright Land use
- Health \triangleright

 \geq

- > Climate
- > Water
- Climate change adaptation
- Climate change mitigsation
- ≻ (...)

 \succ (...)

WORLD RESOURCES INSTITUTE

WRI's Data Lab uses advances in data and technology to help researchers improve lives, protect nature and ensure just transitions.

- Global Forest Watch
- Aqueduct
- Climate Watch
- Ocean Watch \geq
- \triangleright (...)

The **CORDEX** vision is to advance and coordinate the science and application of regional climate downscaling through global partnerships.

- > **CORDEX-CMIP5** data
- **CORDEX-CMIP6** data \geq

Climate Change Knowledge Portal

Data presented on CCKP is disseminated by the World Bank under its Open Data Policy.

CCKP Data Catalog \geq

7 Data – climate projections

COPERNICUS Climate Data Store – Example data sources

CMIP6 Climate projections

Data type	Gridded
Projection	Regular latitude-longitude grid, ocean grid
Horizontal coverage	Global
Horizontal resolution	Varies between models
Vertical coverage	Single levels, pressure levels (1 - 1000 hPa)
Temporary coverage	1850-2300 (shorter for some experiments)
Temporary resolution	Monthly, daily, fixed (no temporal resolution)
File format	NetCDF4
Conventions	Climate and Forecast (CF) Metadata Convention v1.6
Versions	Latest version of the data is provided

Intercomparison Project

Inter-Sectoral Impact Model

Agroclimatic indicators from 1951 to 2099

Data type	Gridded
Projection	Regular latitude-longitude gri
Horizontal coverage	Global
Horizontal resolution	0.5° × 0.5°
Vertical coverage	Surface
Vertical resolution	Single level
Temporary coverage	1951 to 2099
Temporary resolution	Variable dependent: 10-day, seasonal or annual
File format	NetCDF-4
Conventions	Climate and Forecast (CF) Metadata Convention v1.7

Water level change indicators (WLCI)

Climate

Change Service

Data type	Time-series for a vector of point locations
Horizontal coverage	Europe
Horizontal resolution Vertical coverage	Coastal grid points: 0.1° Coastal grid points: 0.1° Coastal grid points: 0.1° <u>Coastal grid points: 0.1</u> Ocean grid points: 0.25°, 0.5°, and 1° within 100 km, 500 km, and >500 km of the <u>coastline, respectively</u> Surface
Vertical resolution	Single level
Temporary coverage	Statistics for ERA5 reanalysis: from 1979 to 2100
Temporary resolution	NA
File format	NetCDF-4

Climate Change Service

Fire danger indicators for Europe (FWI)

DATA DESCRIP	TION
Data type	Gridded
Horizontal coverage	Europe
Horizontal resolution	0.11° x 0.11°
Vertical coverage	Surface
Vertical resolution	Single level
Temporary coverage	1970-2098
Temporary resolution	Daily, seasonal and annual
File format	NetCDF-4
Versions	1.0 (deprecated), 2.0
Update frequency	No updates expected

Main challenges

Limitations and considerations

- Granularity of internal data lower than required by the models, e.g., for underwriting portfolio.
- Necessity of **extensive internal data**: e.g. information on investments, look through details for the funds, energy characteristics and emissions of the real estate portfolio...
 - Integration of **external data**, complexity in source selection, data costs and standardisation
 - Data gaps, guality and consistency of data and use of proxy to fill information gaps
 - Management and processing of large volumes of data (physical climate scenarios, ISIN level calculation)

Dati

- Continuous updating of scenarios and consequent re-calibration of models. ٠
- New and removed scenarios, difficulties in comparisons.

Results

- Anchoring points limited, often incoherent, lack of reliable historical data. •
- **Results not comparable** between different companies, methodologies and hypotheses.

A Examples – physical risk methodology for underwriting

Frequency and intensity projections

ManagementSolutions Making things happen

ILUSTRATIVE EXAMPLE

A Examples – Reports on physical risk for underwriting

	ssp126	ssp245	ssp585	ssp126	ssp245	ssp585	ssp126	ssp245	ssp585	ssp126	ssp245	ssp585
GEOGRAPHY	Convective storm	Convective storm	Convective storm	Wildfire	Wildfire	Wildfire	Drought	Drought	Drought	Flood	Flood	Flood
Spain	1,76%	8,10%	18,26%	30,92%	53,39%	75,31%	20,43%	76,15%	167,52%	12,78%	45,35%	88,27%
Portugal	3,73%	11,99%	19,43%	20,65%	46,38%	74,70%	11,95%	65,97%	105,21%	4,24%	47,13%	83,10%
Italy	1,30%	9,33%	12,50%	17,06%	27,95%	48,55%	4,64%	39,73%	64,20%	7,72%	30,80%	43,35%
Mexico	-0,30%	23,62%	46,02%	26,25%	81,34%	93,62%	3,92%	66,60%	84,02%	12,12%	138,74%	268,06%
Colombia	5,67%	19,49%	46,28%	0,66%	44,52%	110,19%	7,85%	81,92%	83,51%	46,81%	129,19%	303,42%
Brazil	0,00%	8,78%	51,12%	17,37%	57,73%	77,84%	-2,27%	55,25%	82,19%	9,93%	71,22%	400,72%
Chile	6,29%	18,75%	45,49%	-1,83%	55,11%	87,98%	11,77%	88,99%	89,62%	50,24%	130,68%	309,73%
Hungary	-0,39%	29,38%	37,89%	4,98%	21,40%	30,70%	10,22%	35,34%	45,47%	19,83%	126,73%	189,77%
Ireland	21,79%	29,48%	49,59%	3,02%	52,41%	71,95%	-0,01%	39,43%	70,92%	25,68%	96,18%	122,17%
Malta	3,68%	22,60%	33,06%	7,62%	34,21%	59,56%	8,47%	35,58%	64,81%	17,89%	62,14%	105,27%
	2,97%	18,19%	50,80%	8,01%	54,40%	83,33%	13,01%	96,89%	96,40%	44,18%	127,32%	326,80%

2025 2030 2050 14.67% 43.82% 258.76% 20.44% 54.20% 299.11% 14.67% 43.92% 258.76% 14.87% 43.92% 258.76% 14.98% 44.97% 264.21% 15.23% 45.13% 270.01% 16.51% 47.47% 272.81% 14.92% 44.42% 260.68% 20.44% 54.20% 299.91% 15.52% 45.75% 271.80% 14.67% 43.92% 258.76% 14.67% 43.92% 258.76% 14.67% 43.92% 258.76% 15.61% 46.86% 288.74%	
20.44% 54.20% 299.91% 14.67% 43.92% 258.76% 14.98% 44.97% 264.21% 15.23% 45.13% 270.01% 16.51% 47.47% 272.81% 14.92% 44.42% 260.68% 20.44% 54.20% 299.91% 14.92% 44.42% 260.75% 20.44% 54.20% 299.91% 14.67% 43.92% 258.76% 14.67% 43.92% 258.76% 15.61% 46.86% 288.74%	
14.67% 43.92% 258.76% 14.98% 44.97% 264.21% 15.23% 45.13% 270.01% 16.51% 47.47% 272.81% 14.92% 44.42% 260.68% 20.44% 54.20% 299.91% 19.40% 58.79% 363.13% 15.52% 45.75% 271.80% 14.67% 43.92% 258.76% 14.67% 43.92% 258.76% 15.61% 46.86% 288.74%	
14.98% 14.97% 264.21% 15.23% 45.13% 270.01% 16.51% 47.47% 272.81% 14.92% 44.42% 260.88% 20.44% 54.20% 299.91% 19.40% 58.79% 363.13% 15.52% 45.75% 271.80% 14.67% 43.92% 258.76% 14.67% 43.92% 258.76% 15.61% 46.86% 288.74%	
115.23% 45.13% 270.01% 115.23% 45.13% 270.01% 115.51% 47.47% 272.81% 14.92% 44.42% 260.68% 20.44% 54.20% 299.91% 19.40% 58.79% 383.13% 15.52% 45.75% 271.80% 14.67% 43.92% 258.76% 15.61% 46.86% 288.74%	
115.51% 47.47% 272.81% 14.92% 44.42% 260.68% 20.44% 54.20% 299.91% 19.40% 58.79% 363.13% 15.52% 45.75% 271.80% 14.67% 43.92% 258.76% 15.61% 46.86% 288.74%	
14.92% 44.42% 260.68% 20.44% 54.20% 299.91% 19.40% 58.79% 363.13% 15.52% 45.75% 271.80% 14.67% 43.92% 258.76% 15.61% 46.86% 288.74%	
20.44% 54.20% 299.91% 19.40% 58.79% 363.13% 15.52% 45.75% 271.80% 14.67% 43.92% 258.76% 15.61% 46.86% 288.74%	
19.40% 58.79% 363.13% 15.52% 45.75% 271.80% 14.67% 43.92% 258.76% 14.67% 43.92% 258.76% 15.61% 46.86% 288.74%	
15.52% 45.75% 271.80% 14.67% 43.92% 258.76% 14.67% 43.92% 258.76% 15.61% 46.86% 288.74%	
14.67% 43.92% 258.76% 14.67% 43.92% 258.76% 15.61% 46.86% 288.74%	
14.67% 43.92% 258.76% 15.61% 46.86% 288.74%	
15.61% 46.86% 288.74%	
15.81% 45.89% 266.93%	
17.70% 49.47% 281.27%	
15.01% 45.09% 267.41%	
16.91% 48.91% 285.80%	
14.98% 44.97% 264.21%	
15.44% 46.35% 271.00%	
14.67% 43.92% 258.76%	
14.88% 44.62% 265.25%	
15.95% 47.99% 283.00%	
15.74% 46.80% 286.88%	
15.94% 47.87% 280.23%	

45.53%

MEXICO 15.32%

ILUSTRATIVE EXAMPLE

268.06%

A Examples – Reports on transition risk for investments

Net Zero 2050 - Year 2050

GEOGRAPHY	Fossil-fuel	Utility	Energy-intensive	Finance
Italy				
France		23,830%	-8,877%	1,182%
Spain	-44,754%	28,170%		1,106%
United States			-7,283%	0,512%
Germany		30,697%	-8,964%	
Belgium				
China				0,883%
Netherlands				
Jnited Kingdom		35,157%		
Austria			-	
Switzerland			-5,938%	
Portugal		24,902%		
reland				
Rest of countries	-15,636%	27,494%	-2,345%	0,858%

NDCs - Year 2050

SUMMARY OF IMPACTS ON TOTAL INVESTMENT						
Scenario	Horizon	GOVIES	CORP	EQUITY	% TOTAL	TOTAL€€
Net Zero 2050	2025	-0,07%	0,09%	-0,20%	-0,18%	-508.676
Below 2 C	2025	-0,05%	0,03%	-0,07%	-0,09%	-251.481
Delayed transition	2025	-0,01%	0,03%	0,02%	0,05%	133.134
Divergent Net Zero	2025	-0,09%	-0,04%	-0,30%	-0,45%	-1.237.790
Nationally Determined Contributions (NDCs)	2025	-0,04%	0,01%	-0,09%	-0,12%	-335.313
Net Zero 2050	2030	-0,09%	0,19%	-0,32%	-0,24%	-660.473
Below 2 C	2030	-0,06%	0,10%	-0,14%	-0,11%	-310.509
Delayed transition	2030	0,00%	0,11%	0,07%	0,18%	504.744
Divergent Net Zero	2030	-0,11%	-0,02%	-0,41%	-0,56%	-1.538.508
Nationally Determined Contributions (NDCs)	2030	-0,04%	0,09%	-0,12%	-0,08%	-209.579
Net Zero 2050	2050	-0,07%	0,47%	-0,79%	-0,40%	-1.090.126
Below 2 C	2050	-0,09%	0,24%	-0,66%	-0,52%	-1.431.044
Delayed transition	2050	-0,14%	0,29%	-0,93%	-0,80%	-2.217.891
Divergent Net Zero	2050	-0,12%	0,10%	-0,90%	-0,94%	-2.579.310
Nationally Determined Contributions (NDCs)	2050	-0,05%	0,31%	-0,45%	-0,19%	-525.775

ILUSTRATIVE EXAMPLE

Know-How

()International **One Firm**

ۭ ٵٵٵٵ Multiscope

Team

Best Practice Proven

Experience

消 Maximum Commitment

CONTACTS

Efrén Hernández Domínguez Partner efren.manuel.hernandez@msspain.com

Soledad Díaz-Noriega Partner Soledad Díaz-Noriega@managementsolutions.com For more information on the firm please visit:

www.managementsolutions.com

Or at our social network channels: in

© Management Solutions 2024. All rights reserved.