

Claims modelling for climate risk Ronald Richman June 2024

Insurance Background Data Science There has been an increase in both frequency and severity of natural disasters globally — Cost/ year (\$bn) (RHS) US natural disasters 1980 – 2020 Number of events (LHS) 28 153 160 26 140 24 22 120 20 102 18 100 89 16 14 80 12 56 60 10 18,7 17,8 8 40 30 12,8 6 20 4 20 6,7 5,5 2 3,1 0 0 1980s 1990s 2000s 2010s Last 5 years Last 3 years

Source: Old Mutual Insure pricing data (inflation- and exposure-adjusted weather catastrophe claims) R'mil

Macro and Micro Modelling

- Pre-existing models of shocks to shortterm insurance portfolio:
 - Earthquake
 - Hail
 - Wildfire
 - Flood
 - Windstorm
- Models calibrated to recent experience of these perils
- Run at a portfolio level
- <u>Can we modify these models to take</u> <u>climate change into account?</u>

- Pricing data links individual policies in portfolio to claims data
- Can also acquire climate data looking at experience at granular level...
- ... e.g. precipitation data in small areas for a long period
- <u>Can we link climate data to our</u> <u>traditional pricing to quantify effect</u> <u>of climate change?</u>

Insurance

Data

Micro - Short-term Weather Forecasting

Project aim

- Can we link climate data to our traditional pricing to quantify effect of climate change?
- Incorporate highly granular precipitation data, curated by meteorologists, into traditional short-term pricing datasets.

Insurance

Data

Science

- Fit statistical models to observe predictive value of this addition.
- Quantify the potential impact of using future predicted precipitation levels in rating processes
- Quantify the impact of increased precipitation (driven by climate change and La Nina weather system) on insurance risk

• Project with support from:

- University of the Witwatersrand (Prof. Rendani Mbhuva, Adam Balusik)
- University of Pretoria (Prof. Willem Landman)
- ETH Zürich (Prof. Dr. Mario V Wüthrich)
- OMI Catastrophe & Climate Modelling (Caesar Balona)
- Working paper in progress

Micro - Short-term Weather Forecasting

Insurance Data Science

- Overview of steps taken
 - Select one line of business
 - Geolocate LoB pricing file using external service provider
 - Obtained CHIRPS precipitation dataset
 - Created precipitation grid across SA at a 0.05' longitude by 0.05' latitude level of granularity (~25km²)
 - Mapped geolocated pricing file to the precipitation grid
 - Fit Gradient Boosted Machines (GBMs) model to predict claims experience using factors used in the current pricing environment, with and without precipitation
 - Fit a Neural Net to disperse overall South African rainfall forecasts to a grid level
 - Refit models using forecasted rainfall
 - Analyzed model results on an actual and forecasted basis
 - Feature importance
 - Dependence plots
 - Predicted loss experience by yearly rainfall experience (actual and forecasted basis)

Geolocation – Data Engineering

- Data Considerations
 - Geolocated LOB pricing file
 - ~ 13mil rows and many columns
 - CHIRPS precipitation dataset
 - ~ 19.5mil rows and 4 columns
 - Memory management and optimisation becomes very important
 - Python Pandas
 - Batch processing
 - Memory efficient data storage
 - Minimum viable datatypes
 - Use vectorized operations where possible
 - Utilize GPU for modelling

Insurance

Data

Precipitation – CHIRPS Overview

CHIRPS Dataset

- Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) is a 35+ year quasi-global rainfall data set.
- Spanning 50°S-50°N (and all longitudes) and ranging from 1981 to near-present.
- CHIRPS incorporates in-house climatology, 0.05° resolution satellite imagery, and in-situ station data to create gridded rainfall time series for trend analysis and seasonal drought monitoring.

Linking Exposure to Precipitation - Visualisation

Gauteng - Precipitation vs Loss Ratio

Insurance

Data

Modelling Implementation

Model

Form

Algorithm

Inputs

Weight

Output

Validation score

Train/Test Split

Loss function

Loss prediction given precipitation experience

Frequency GBM

Gradient Boosted Machine

Poisson Regression

Poisson Negative Log-

(Grid Precipitation)

Traditional rating factors +-

Poisson Mean Deviance

LightGBM

Time-based

Likelihood

Exposure

Frequency

Severity GBM	
Model	Gradient Boosted Machine
Form	Gamma Regression
Algorithm	LightGBM
Train/Test Split	Time-based
Evaluation metric	Gamma Negative Log-Loss Likelihood
Inputs	Traditional rating factors +- (Grid Precipitation)
Weight	Exposure
Output	Severity
Validation score	Gamma Mean Deviance

Insurance

Data

Modelling Implementation

Forecasting precipitation

Grid Dispersion NN		
Model	Neural Net	
Form	Poisson Regression	
Algorithm	Keras	
Train/Test Split	Random	
Loss function	Mean Squared Error	
Inputs	Grid cell bounds, Overall precipitation prediction*, Calendar month	
Output	Per grid cell precipitation	
Validation score	MSE	

Insurance

<u>Data</u>

Data

Science

Out-of-sample validation scores

Model	Poisson/Gamma Deviance
Frequency GBM w/o precipitation	0.1687
Frequency GBM w/ actual precipitation	0.1679
Frequency GBM w/ forecasted precipitation	0.1683
Severity GBM w/o precipitation	1.7833
Severity GBM w/ actual precipitation	1.7465
Severity GBM w/ forecasted precipitation	1.7775

Insurance Data Science

Frequency GBM Implementation

Traditional Pricing Dataset

With Forecasted Precipitation Data

Frequency GBM Implementation

Sample P/H Sensitivity (Base Risk Profile)

Partial Dependency Plot

Insurance

Data

Insurance Data Science

Severity GBM Implementation

Overall Book Sensitivity to Yearly Precipitation Experience (2021 Base)

Loss Experience

Yearly Precip vs Loss Experience (2021 Base)

Insurance

Data

Conclusions

- Shown that traditional short-term pricing datasets can be linked to open-source highly granular precipitation data
- Demonstrated that precipitation data is a highly predictive factor when modelling insurance risk
- Demonstrated the relationship between changes in actual precipitation and frequency and severity
- Obtained precipitation forecasts that may be used for practical implementations (pricing/proactive risk management)
- Demonstrated that precipitation forecasts provide similar predictive value
- Obtained distribution of loss experience given differing years of precipitation experience for proactive risk management.