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Cost/ year ($bn) (RHS)

Number of events (LHS)US natural disasters 1980 – 2020

Source:  NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar Weather and Climate Disasters (2022)
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There has been an increase in both frequency and severity of natural disasters 
globally

Background



Source: Old Mutual Insure pricing data (inflation- and exposure-adjusted weather catastrophe claims) R’mil
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Average Annual CAT Claims 

(2000-2011) =  R39m

Average Annual CAT Claims 

(2012-2022) =  R371m

Severity of weather-related claims has increased 10-fold over last decade 

Severity Impact



Macro view

- Pre-existing models of shocks to short-
term insurance portfolio:

- Earthquake
- Hail
- Wildfire
- Flood
- Windstorm

- Models calibrated to recent experience 
of these perils

- Run at a portfolio level
- Can we modify these models to take 

climate change into account?

Micro view

- Pricing data links individual policies 
in portfolio to claims data

- Can also acquire climate data 
looking at experience at granular 
level…

- … e.g. precipitation data in small 
areas for a long period

- Can we link climate data to our 
traditional pricing to quantify effect 
of climate change?

Macro and Micro Modelling



• Project aim

• Can we link climate data to our traditional pricing to quantify effect of climate change?

• Incorporate highly granular precipitation data, curated by meteorologists, into traditional short-term pricing 
datasets.

• Fit statistical models to observe predictive value of this addition.

• Quantify the potential impact of using future predicted precipitation levels in rating processes

• Quantify the impact of increased precipitation (driven by climate change and La Nina weather system) on 
insurance risk

• Project with support from:

• University of the Witwatersrand (Prof. Rendani Mbhuva, Adam Balusik)

• University of Pretoria (Prof. Willem Landman) 

• ETH Zürich (Prof. Dr. Mario V Wüthrich)

• OMI Catastrophe & Climate Modelling (Caesar Balona)

• Working paper in progress

Micro - Short-term Weather Forecasting



• Overview of steps taken

• Select one line of business

• Geolocate LoB pricing file using external service provider 

• Obtained CHIRPS precipitation dataset

• Created precipitation grid across SA at a 0.05’ longitude by 0.05’ latitude level of granularity (~25km2)

• Mapped geolocated pricing file to the precipitation grid

• Fit Gradient Boosted Machines (GBMs) model to predict claims experience using factors used in the current 
pricing environment, with and without precipitation

• Fit a Neural Net to disperse overall South African rainfall forecasts to a grid level

• Refit models using forecasted rainfall

• Analyzed model results on an actual and forecasted basis

• Feature importance

• Dependence plots

• Predicted loss experience by yearly rainfall experience (actual and forecasted basis)

Micro - Short-term Weather Forecasting



• Data Considerations

• Geolocated LOB pricing file

• ~ 13mil rows and many columns

• CHIRPS precipitation dataset

• ~ 19.5mil rows and 4 columns

• Memory management and optimisation becomes very important

• Python – Pandas

• Batch processing

• Memory efficient data storage 

• Minimum viable datatypes

• Use vectorized operations where possible

• Utilize GPU for modelling 

Geolocation – Data Engineering



• CHIRPS Dataset

• Climate Hazards Group InfraRed Precipitation with 
Station data (CHIRPS) is a 35+ year quasi-global rainfall 
data set.

• Spanning 50°S-50°N (and all longitudes) and ranging 
from 1981 to near-present.

• CHIRPS incorporates in-house climatology, 0.05° 
resolution satellite imagery, and in-situ station data to 
create gridded rainfall time series for trend analysis and 
seasonal drought monitoring.

Precipitation – CHIRPS Overview



South Africa By Province
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Precipitation – CHIRPS Visualisation
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Linking Exposure to Precipitation – Join Logic



Linking Exposure to Precipitation - Visualisation



Frequency GBM

Model Gradient Boosted Machine

Form Poisson Regression

Algorithm LightGBM

Train/Test Split Time-based

Loss function Poisson Negative Log-
Likelihood

Inputs Traditional rating factors +- 
(Grid Precipitation)

Weight Exposure

Output Frequency

Validation score Poisson Mean Deviance

Severity GBM

Model Gradient Boosted Machine

Form Gamma Regression

Algorithm LightGBM

Train/Test Split Time-based

Evaluation metric Gamma Negative Log-Loss 
Likelihood

Inputs Traditional rating factors +- 
(Grid Precipitation)

Weight Exposure

Output Severity

Validation score Gamma Mean Deviance

Loss prediction given precipitation experience

Modelling Implementation



Grid Dispersion NN

Model Neural Net

Form Poisson Regression

Algorithm Keras

Train/Test Split Random

Loss function Mean Squared Error

Inputs Grid cell bounds, Overall precipitation 
prediction*, Calendar month

Output Per grid cell precipitation

Validation score MSE

Forecasting precipitation

Modelling Implementation



Out-of-sample validation scores

Model Poisson/Gamma Deviance

Frequency GBM w/o precipitation 0.1687

Frequency GBM w/ actual precipitation 0.1679

Frequency GBM w/ forecasted precipitation 0.1683

Severity GBM w/o precipitation 1.7833

Severity GBM w/ actual precipitation 1.7465

Severity GBM w/ forecasted precipitation 1.7775

Modelling Results



Traditional Pricing Dataset With Forecasted Precipitation Data

Frequency GBM Implementation

Modelling Results



Sample P/H Sensitivity (Base Risk Profile)

Frequency GBM Implementation

Partial Dependency Plot

Modelling Results



Traditional Pricing Dataset With Forecasted Precipitation Data

Severity GBM Implementation

Modelling Results



Overall Book Sensitivity to Yearly Precipitation Experience (2021 Base)

Loss Experience

Precipitation induced 
volatility on loss 
experience was 

calculated to equal 

61% 
of the associated 
SAM measure of 

volatility.

Modelling Results



• Conclusions

• Shown that traditional short-term pricing datasets can be linked to open-source highly granular 

precipitation data

• Demonstrated that precipitation data is a highly predictive factor when modelling insurance risk

• Demonstrated the relationship between changes in actual precipitation and frequency and severity

• Obtained precipitation forecasts that may be used for practical implementations (pricing/proactive risk 
management)

• Demonstrated that precipitation forecasts provide similar predictive value

• Obtained distribution of loss experience given differing years of precipitation experience for proactive 
risk management.

Conclusion
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