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Introduction

Let us start with a general set-up of actuarial and statistical learning in the framework of
GLMs,

We consider a response variable Y with mean and variance:

E[Y |x] = µ(x,θ) and Var[Y |x] = ϕV (µ(x,θ)),

where x ∈ Rd is a d-dimensional feature vector that characterizes the response and
θ ∈ Rd is a d-dimensional parameter vector of the functional µ,

We assume:

g(µ(x,θ)) = η(x,θ) = x⊤θ,

for a given strictly monotone and smooth link function g,

The goal is to estimate and validate the mean functional x 7→ µ(x), i.e. the vector of
parameters θ, based on (Yi,xi)

n
i=1 using minimal information about the distribution of

Yi|xi and making minimal subjective decisions in estimation process.
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Introduction

The variance function still enters statistical estimation and inference at least at three

problems:

Asymptotically efficient estimation of mean functionals by the
quasi(pseudo)-likelihood method,
Back-transformation of maximum likelihood estimates on log scale to original scale
for lognormally distributed responses,
Tests and validation plots, such as reliability plots (lift plots) for validation of the
auto-calibration property of predictors.
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Asymptotically efficient estimation of mean functionals by the

quasi(pseudo)-likelihood method
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Quasi(pseudo)-likelihood method

In the framework of GLMs, if the distribution of the response is properly specified, and if
the distribution is a member of the exponential dispersion family, the parameter θ ∈ Rd is
estimated by minimizing the deviance loss function L of the true distribution, i.e. we solve:

θ̂ = argmin
θ∈Rd

n∑
i=1

L
(
Yi, µ(xi,θ), V

(
µ(xi,θ)

))
,

In practice, it is very unlikely that the response exactly follows the chosen distribution,

We can apply the quasi(pseudo)-likelihood method – we choose
any deviance loss function derived from a particular distribution from the EDF and the

parameter θ ∈ Rd is still estimated by minimizing the deviance loss function,

Since deviance loss functions are strictly consistent scoring functions for mean estimation,
the quasi(pseudo)-likelihood estimate is strongly consistent,

We can gain asymptotic estimation efficiency in the quasi(pseudo)-likelihood method by
properly specifying the variance function of the response.

The key problem is to estimate variance function and incorporate its estimate in estimation
of mean functional
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Quasi(pseudo)-likelihood method

Estimation of the variance function and its impact on mean estimation
is not very popular in an actuarial context where the focus is mainly on GLMs,

At the same time, the problem is well-known in statistics,

The results by Chiou, Muller, 1999, Non-parametric quasi-likelihood estimation, The
Annals of Applied Statistics, show if the variance function is estimated with a local
polynomial smoother then the asymptotic limiting distribution of the vector of parameters
in the mean functional is the same as for the quasi-likelihood estimates obtained under
correct specification of the variance function,

However, without carefully chosen bandwidth and degree of polynomial good estimates
cannot be obtained in the framework of smoothing methods.
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Non-parametric quasi(pseudo)-likelihood method

Our contribution: We explore the non-parametric quasi(pseudo)-likelihood method with
isotonic regression as a non-parametric variance estimator – we validate isotonic
regression as an alternative to local regression,

We believe it is simple, requires minimal assumptions and
no intervention in variance estimation (no bandwidth and no hyperparameters selection),
and can be applied in many real-life actuarial problems.

In order to apply isotonic regression we work under the assumption that µ 7→ V (µ) is
increasing,

In the actuarial science the Tweedie family with a strictly increasing variance function
V (µ) = µp, p ≥ 1, plays a dominant role and fits many real-life application.

 L. Delong (WNE UW) 7 / 30



Non-parametric quasi(pseudo)-likelihood method

There are other possible approaches to estimate the variance function of the response, or

even the whole distribution of the response, e.g double GLM, GAMLSS, mixture of

experts, cyclic GBM:

Delong,  L., Lindholm, M., Zariksson, H., 2024, On cyclic gradient boosting
machines,

However, we have to specify and fit additional regression functions, which might be too
sophisticated for an application (image we want to improve Gamma GLM with double
GLM for Inverse Gaussian claim amounts), or perform hyperparameters optimization.

 L. Delong (WNE UW) 8 / 30



Isotonic regression

Isotonic regression is a rank based non-parametric and monotonic regression approach
that preserves monotonicity in pre-specified ranks of original predictor (π(xi))

n
i=1,

Assume we have data points (Yi, π(xi))
n
i=1 and positive case weights (wi)

n
i=1. Would

like to fit a non-parametric regression model to the responses (Yi)
n
i=1 which respects the

ranks (π(xi))
n
i=1,

We consider the following estimation problem:

µ̂ = argmin
µ=(µ1,...,µn)⊤∈Rn

n∑
i=1

wi (Yi − µi)
2 ,

subject to µj ≤ µk ⇐⇒ π(xj) ≤ π(xk) for all 1 ≤ j, k ≤ n.

Estimation problem can be solved using the pool adjacent violators (PAV) algorithm. The
resulting solution can also be written as the following min-max formula:

µ̂i = min
j=i,...,n

max
k=1,...,j

1∑j
l=k wl

j∑
l=k

wlYl, 1 ≤ i ≤ n.
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Synthetic data set

In our experiments we consider claims sizes,

We use a synthetic data set that was built on the data set swmotorcycle from the R
package CASdatasets – we know the ground truth about the distributions of the claim
sizes and their parameters,

We estimate a regression function for the claim sizes on the original data and use this
regression as the mean functional for our synthetic polices,

We choose a special variance function which has different regimes for different ranges of
the expectations:

V (µ) = µ21{µ < µ∗
1}+

(
c1 + µ2 log(µ)

)
1{µ∗

1 ≤ µ < µ∗
2}+

(
c2 + µ3)1{µ ≥ µ∗

2},

We simulate n = 20, 000 claim sizes (Yi)
n
i=1 for our policies (medium-sized insurer) from

lognormal distributions with the two moments
(
µ(xi), ϕV (µ(xi)

)n
i=1

specified as above.
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Classical Gamma GLM

We start with a classical actuarial approach,

We fit a Gamma GLM with quadratic variance function V (µ) = µ2 and log-link function
g(µ) = log(µ) to our observations,

Since we know the true means, the fit of the Gamma GLM is very poor in terms of mean
estimates – this should give a warning to actuaries that variance function is important,
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We can fit GLMs with other parametric forms of the variance function in the Tweedie
family with V (µ) = µp and we always get poor estimates,

We can improve our estimates by jointly modelling the mean and the variance function of
the response by using isotonic regression for variance estimation.
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Quasi GLM with variance estimation

Quasi-likelihood with Non-Parametric Variance Estimation

Step 1: We estimate the expected value of the response with a classical GLM with link function g and variance function

V GLM implied by the selected GLM. This provides an initial parameter estimate θ̂
0

and the estimated mean values(
µ̂0(xi)

)n
i=1

for all instances 1 ≤ i ≤ n.

Step 2: We estimate the variance of the response using the crude estimator

v̂
0
i =

(
Yi − µ̂0(xi)

)2
1 − h0

i

,

where (h0
i )

n
i=1 denote the hat values of the GLM fitted at the initial step.

Step 3: We estimate the variance function of the response based on the observations
(
v̂0
i , µ̂

0(xi)
)n
i=1

. We use an

isotonic regression assuming that the true variance function V (µ(x)) is monotonically increasing in µ(x). This step

provides us with an estimate of the variance function µ 7→ V̂ 0(µ) and the variances V̂ 0(µ̂0(xi)) for all instances
1 ≤ i ≤ n.

Step 4: We iterate for k = 1 to K:
(i) We estimate the expected value of the response with a GLM with link function g using the quasi-likelihood

method. In the deviance loss function we use the estimated variance function µ 7→ V̂ k−1(µ) as the variance
function of the EDF family.

(ii) We get new estimates of θ̂
k

and
(
µ̂k(xi)

)n
i=1

for all instances 1 ≤ i ≤ n.

(iii) We re-estimate the variance of the response using the crude estimator:

v̂
k
i =

(
Yi − µ̂k(xi)

)2
1 − hk

i

.

(iv) We re-estimate the variance function of the response based on the observations
(
v̂k
i , µ̂k(xi)

)n
i=1

using
an isotonic regression and assuming monotonicity in the mean estimates. We get new estimates of

µ 7→ V̂ k(µ) and V̂ k(µ̂k(xi)) for all instances 1 ≤ i ≤ n.

 L. Delong (WNE UW) 12 / 30



Quasi GLM with variance estimation

In terms of variance, the isotonic regression gives accurate results,

In terms of mean, we gain a major improvement in accuracy. We get small estimation
errors of order +1% and −2%, compared to +30% and −30% for the Gamma GLM,
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We conclude that on a finite sample we should easily improve mean estimation with
quasi-likelihood with non-parametric isotonic variance estimation.
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Quasi GLM with variance estimation

The theory of quasi-likelihood methods says that when the sample size increases, we may
misspecify the true variance function, but asymptotically the mean estimates converge to
the true means,

We present the estimation errors for our synthetic data set with an increased sample size
of n = 100, 000,
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Even for a large insurer it should be beneficial to include variance function to achieve
accurate mean estimates.
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Back-transformation of maximum likelihood estimates on log scale to

original scale for lognormally distributed responses
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Maximum likelihood for lognormal response

In our data set the responses follow lognormal distributions – it is natural to perform MLE
under the true distribution to gain full efficiency of the mean estimator,

MLE is performed on logged responses and an exponential transformation is applied to
the mean and variance estimates on the log scale to get the mean estimate on the original
scale,

If we misspecify the variance function on the log scale, then the MLE for the mean value
on the original scale is no longer strongly consistent – variance estimation is a must here.

The key problem is to estimate variance function on log scale and incorporate its estimate in
estimation of mean functional on original scale

Our contribution: We use the results from the first part of this presentation to advise to
fit the variance function of logged observations and transform the mean and variance
estimates from logged scale to original scale.
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Maximum likelihood for lognormal response

For simplicity we present the result for logarithmic link function,
We consider a lognormal response variable Y with mean and variance:

E[Y |x] = µ(x,θ) = ex
⊤θ and Var[Y |x] = ϕV (µ(x,θ)),

If Y |x has a lognormal distribution with mean E[Y |x] and variance Var[Y |x], then
Z = log(Y ), conditional on x, is normally distributed,
We introduce an auxiliary response variable on the log scale:

Z̃ = Z +
1

2
Var[Z|x],

with the first two moments:

E[Z̃|x] = E[Z|x] +
1

2
Var[Z|x] = log(µ(x,θ)) = x⊤θ = η(x,θ),

Var[Z̃|x] = log

(
1 +

Var[Y |x](
E[Y |x]

)2
)

= log

(
1 +

V (µ(x,θ))(
µ(x,θ)

)2
)

=: Ṽ
(
η(x,θ)

)
= Var[Z|x],

where Ṽ is a variance function of the response on the log scale seen as a function of the
linear predictor η (a function of the logarithm of the mean value of the response on the
original scale),
We assume that η 7→ Ṽ (η) is increasing.
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Maximum likelihood for lognormal response

Lognormal Linear Model with Non-Parametric Variance Estimation

Step 1: We estimate the linear predictor with a Gaussian GLM with identity link and unit weights based on the

observations (Zi,xi)
n
i=1. We get an initial estimate of the parameter θ̂

0
, the linear predictors

(
η̂0(xi)

)n
i=1

and

the estimated mean values
(
µ̂0(xi)

)n
i=1

for all instances 1 ≤ i ≤ n.

Step 2: We estimate the variance of the response on the log scale using the crude estimator:

̂̃v0
i =

(
Zi − η̂0

i

)2

1 − h0
i

,

where (h0
i )

n
i=1 denote the hat values of the Gaussian GLM fitted in the initial step.

Step 3: We estimate the variance function of the response on the log scale based on the observations(̂̃v0
i , η̂

0(xi)
)n
i=1

. We use an isotonic regression assuming that the true variance function Ṽ (η(x))

is monotonically increasing in η(x). This step gives us an estimate of the variance function η 7→ ̂̃
V

0
(η) and the

variances
̂̃
V

0
(η̂0(xi)) for all instances 1 ≤ i ≤ n.
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Maximum likelihood for lognormal response

Lognormal Linear Model with Non-Parametric Variance Estimation

Step 4: We iterate for k = 1 to K:

(i) We estimate the linear predictor with a Gaussian GLM with identity link, the weights( ̂̃
V

k−1(
µ̂k−1(xi)

))−1
and the offset − 1

2
̂̃
V

k−1(
η̂k−1(xi)

)
based on the observations (Zi,xi)

n
i=1.

(ii) We get new estimates of θ̂
k

,
(
η̂k(xi)

)n
i=1

and
(
µ̂k(xi)

)n
i=1

for all instances 1 ≤ i ≤ n.

(iii) We re-estimate the variance of the response on the log scale using the crude estimator:

̂̃vk
i =

(
Zi + 1

2
̂̃
V

k−1(
η̂k−1(xi)

)
− η̂k(xi)

)2

1 − hk
i

.

(iv) We re-estimate the variance function of the response on the log scale based on the observations(˜̂vk
i , η̂

k(xi)
)n
i=1

using an isotonic regression. We get new estimates of η 7→ ̂̃
V

k
(η) and

̂̃
V

k
(η̂k(xi)) for

all instances 1 ≤ i ≤ n.
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Maximum likelihood for lognormal response

We arrive at precise estimates of the expected values and the variances of the responses,
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Our algorithm describes how to fit lognormal distributions in a regression setting with
variance function depending on mean (an alternative approach would be to fit GAMLSS).
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Reliability plots (lift plots) for validation of the auto-calibration property of

predictors
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Auto-calibration property of predictors

A regression function x 7→ µ(x) is auto-calibrated for (Y,X) if

µ(X) = E [Y |µ(X)] ,

In actuarial pricing, auto-calibration means that every price cohort µ(X) is in average
self-financing for its claim Y . This implies that there is no systematic cross-financing
within the price system µ(·),
The goal is to build a mean estimator µ̂, which accurately approximates the best-estimate
price µ∗ = E[Y |X], and which fulfills the auto-calibration property.
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Auto-calibration property of predictors

A diagnostic tool for checking auto-calibration of a regression function is a reliability
diagram (lift plot),

In modern statistical learning approach, we compare the estimated mean values(
µ̂(xi)

)n
i=1

against their recalibrated values
(
µ̂rc(xi)

)n
i=1

, where µ̂rc is constructed from
µ̂ with an isotonic regression,

Such reliability diagrams are called CORP, since:

C: the reliability diagrams and associated numerical measures of miscalibration are
consistent in the classical statistical sense of convergence to population
characteristics (consistency);
O: the reliability diagrams are optimally binned (optimality);
R: the reliability diagrams do not require any tuning parameters nor implementation
decision (reproducibility); and
P: the reliability diagrams are implemented via the PAV algorithm (pool adjacent
violators algorithm).

If the points
(
µ̂(xi), µ̂rc(xi)

)n
i=1

of a reliability diagram lie close to its diagonal, the
mean estimator µ̂ is auto-calibrated. We would like to formally evaluate the significance
of the observed deviations from the diagonal.
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Auto-calibration property of predictors

Murphy’s score decomposition of a strictly consistent scoring function gives us:

S(Y, µ̂) = UNCS(Y, µ̂)−DSCS(Y, µ̂) +MCBS(Y, µ̂),

with the uncertainty, discrimination and miscalibration statistics:

UNCS(Y, µ̂) = S(Y, µ̄),

DSCS(Y, µ̂) = S(Y, µ̄)− S(Y, µ̂rc) ≥ 0,

MCBS(Y, µ̂) = S(Y, µ̂)− S(v, µ̂rc) ≥ 0,

with µ̄ =
∑n

i=1 Yi/n being the empirical mean not considering any features,
A small value of the miscalibration statistics MCBS(Y, µ̂) supports the hypothesis that
the estimated mean values µ̂ are auto-calibrated,
We set the null hypothesis H0 : MCBS(Y, µ̂) = 0 against the alternative
H1 : MCBS(Y, µ̂) > 0 and formally evaluate the significance of a positive miscalibration
statistics.

The key problem is to construct a point-wise consistency band for a reliability diagram and
derive a critical value for the miscalibration test

Our contribution: We propose techniques based on bootstrap and isotonic regresion for
variance estimation for validating the auto-calibration property of mean predictors.
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Auto-calibration property of predictors

Semi-Parametric Bootstrap Approach

We assume that the estimated means
(
µ̂(xi)

)n
i=1

are given,

Step 1: We estimate the variances of Yi|xi for all instances 1 ≤ i ≤ n under the estimated means
(
µ̂(xi)

)n
i=1

by
an isotonic regression assuming that these variances are monotonically increasing in the means. We fit an isotonic

regression to
(
v̂i, µ̂(xi)

)n
i=1

, where

v̂i =
(Yi − µ̂(xi))

2

1 − hi

,

and (hi)
n
i=1 are the hat values from the fitted model. The isotonic regression provides us with variance estimates

V̂ (xi) for all instances 1 ≤ i ≤ n under the estimated means.

Step 2: We calculate the quantile residuals defined by ε̂i = F
(
Yi, µ̂(xi), V̂ (xi)

)
for all instances 1 ≤ i ≤ n,

where we use a two-parametric cumulative distribution function F with the first two (estimated) moments(
µ̂(xi), V̂ (xi)

)n
i=1

.

Step 3: Under an i.i.d. assumption for the quantile residuals, we bootstrap (ε∗i )
n
i=1 from (ε̂i)

n
i=1 to receive the

bootstrap observations:

Y
∗
i = F

−1(
ε
∗
i , µ̂(xi), V̂ (xi)

)
.

Step 4: Based on the new sample
(
Y ∗
i , µ̂(xi)

)n
i=1

, we recalibrate the mean estimator µ̂ with an isotonic regression,
plot the T-reliability diagram and calculate the miscalibration statistics. From repreating this semi-parametric bootstrap,
we can construct empirical confidence bands for the T-reliability diagram and find critical values for the miscalibration
test, under the null hypothesis that

(
µ̂(xi)

)n
i=1

are the best-estimate prices, hence, auto-calibrated.

 L. Delong (WNE UW) 25 / 30



Classical Gamma GLM

Using our diagnostic tools, we can conclude that the mean estimates from the classical
Gamma GLM are not auto-calibrated,

The Gamma GLM seems to over-estimate the true means of policyholders with small
expected claims, and under-estimate the true means of policyholders with large expected
claims – in practice, such a misesimation leads to a “wrong” premium, which in turn may
imply adverse selection.
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Quasi GLM with variance estimation

If we switch to the non-parametric quasi-likelihood estimation with isotonic regression, the
results show that the miscalibration observed for the Gamma GLM vanishes for most
estimated mean values,

The Quasi GLM does not have a bias (the mean estimates from the Quasi GLM are
auto-calibrated and we cannot reject the null hypothesis of having an auto-calibrated
model).
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Maximum likelihood for lognormal response

The mean estimates achieved with our algorithm are auto-calibrated and we cannot reject
the null hypothesis of having an auto-calibrated model.
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We believe that our diagnostic tools should be useful in detecting bias and miscalibration
of mean predictions.
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Conclusion

We have emphasized the significance and benefits of an accurate variance estimation for
mean estimation in regression models,

We have proposed an isotonic regression as a tool for non-parametric variance estimation
as a monotonic function of the mean,

We have recommended diagnostic tests for validating the auto-calibration property of
predictor,

Our approach with joint mean-variance estimation also applies to GAMs, regression trees,
neural networks or any other more complex regression framework,

For more details, please see the paper:  L. Delong, M. Wüthrich, 2024, Isotonic regression
for variance estimation and its role in mean estimation and model validation,
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4477677.
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