
Credibility in network regression with
σ-hot encoding and weight balancing

Anne van der Scheer

Insurance Data Science Conference, Stockholm
17 - 18 June 2024



Outline

▶ Credibility in networks
▶ From 1-hot to σ-hot encoding
▶ Weight balancing and initialization
▶ Simulation Friedman function
▶ Simulation disability insurance
▶ Implementation
▶ Conclusions
▶ References



Credibility in networks

Introduction
Credibility theory fills in the gap between using and not using some
categories as covariates in a regression model. GLM needed the
extension to GLMM for handling credibility of sparse1 categories, by
adding random effects to the model and thereby preventing
overfitting.

In the literature of neural network regression we find the same
distinction between fixed and randomized categoricals. For
randomized categoricals the network comes with specific extensions
under restrictive assumptions. For an overview of developments see
Avanzi (2023) and Richman (2023).

1this often comes with high-cardinality, but sparse categories can also occur
within a small number of categories



Credibility in networks

Alternative to randomization
Neural networks provide a general structure without the specific
form of classical models. The learning process is still hardly
understood, but it is well known that standardization of continuous
variables plays an important role in the learning capacity of the
network.

If we extend this equal playing field of continuous variables to
categorical variables, then they can also fairly compete for the
available complexity (by influencing weights) and credibility will be
naturally achieved. This idea fits a Machine Learning setting.

Therefore we reconsider the encoding and handling of categorical
variables.



From 1-hot to σ-hot encoding

The standard transformation procedure for getting from an
unordered categorical variable with k levels to numbers is 1-hot
encoding:

for every v ∈ {v1, v2, . . . , vk} the corresponding 1-hot
encoded values w1,w2, . . . ,wk ∈ {0, 1} are defined by
wi = 1(v=vi ).

▶ Following the electrical metaphor, we will call 0 the cold-value
and 1 the hot-value

▶ We will assume that we do not use a reference variable and
therefore use k instead of k−1 variables



From 1-hot to σ-hot encoding

Issues with 1-hot encoding:
▶ sparse categories have their own “full” weights which can lead

to overfitting
▶ in regularization (like L1- and L2-penalties) all weights are of

equal importance

Therefore we argue:
▶ hot-values and their weights seem to be interchangeable, but

they are not during regularized training
▶ hot-values should not be arbitrarily chosen (i.e. always equal 1)



From 1-hot to σ-hot encoding

We repeat standardizing continuous variables before they entry the
network:

v → v − µ

σ

where µ is the mean and σ is the standard deviation1 of the
observations for each variable. Standardized variables become
centered around zero with a standard deviation of 1.

We try to adopt these properties for categorical variables, so that
they have optimal interaction with the continuous variables during
training.

1population or sample standard deviation



From 1-hot to σ-hot encoding

In an attempt to equalize categorical and continuous variables, we
start naively by standardizing the 1-hot encoding in the same way
as a continuous variable:

0 → −p√
p(1 − p)

1 → 1 − p√
p(1 − p)

where p is the fraction of hot-values in the observations.

Remark: the resulting values are independent of the specific choice
of 0 and 1, as long as cold-value < hot-value.



From 1-hot to σ-hot encoding

We notice the following:
▶ p ↓ 0: standardized hot-value → ∞, cold-value ↑ 0
▶ p ↑ 1: standardized hot-value ↓ 0, cold-value → −∞

Recognizing that each hot-encoded variable is only part of a
categorical variable, we multiply the standardized outcomes by the
relative frequencies of the cold- and hot-values (1−p resp. p) to get

cold-value → (1−p) · −p√
p(1−p)

= −
√
p(1−p) = −σ

hot-value → p · 1−p√
p(1−p)

=
√

p(1−p) = σ



From 1-hot to σ-hot encoding

Instead of the 1-hot encoding this leads to a signed σ-coding,
where σ is the standard deviation of the observed values,
independent of the original cold- and hot-values.

Remarks:
▶ for sparse (p ≈ 0) and dominant (p ≈ 1) categories the

encoding gets close to zero
▶ σ gets a maximal value of 0.5 when p = 0.5
▶ for categorical variables with only two categories, both

categories get the same encoding
▶ the last step in the encoding destroyed the balance of the

hot-encoded variables. This needs to be repaired



From 1-hot to σ-hot encoding

To make the following easier, we set the cold-value to zero (instead
of -σ) and leave the hot-value unchanged:

cold-value → 0
hot-value → σ

We will call this the σ-hot encoding.

Just like with the continuous variables we want a balanced input
around zero for the whole categorical variable. To be precise, we
want to ensure that the sum of the weighted inputs equals zero for
every categorical variable and for every receiving neuron. At
initialization and during training.



Weight balancing and initialization

Balancing the sum of the weighted inputs for a categorical variable
starts with a proper initialization. The standard in literature is a
random initialization of all weights. Biases are often initialized as
zero. We will do it the other way around:
▶ all weights are initialized as zero
▶ all biases in a layer are deterministically initialized around zero,

thereby avoiding symmetry

With zero weights we start with a balanced sum of each categorical
variable at each entry of neurons in the first hidden layer. After
each update of the weights we will resolve existing inbalances.



Weight balancing and initialization

Let W (1)
ji for i ∈ I be the weights of the σ-hot encoded variables of

some categorical variable, let ni be the corresponding numbers of
hot-encodings σi and let N be the total number of observations.
Then we get

inbalancej =
∑
i∈I

W
(1)
ji · σi · ni

To restore balance again, we update the bias bj and the weights of
the receiving neuron j :

b∗j = bj +
inbalancej

N

W
(1)
ji

∗
= W

(1)
ji −

inbalancej
σi · N



Weight balancing and initialization

Remarks:
▶ the updated biases and weights do not change the response of

the network for all observations
▶ for very small categories we will get a weighted input that

becomes almost zero and because of the weight balancing the
network will produce an outcome close to average. Just what
can be expected from a credibility approach

▶ σ-hot encoding does not change by scaling the number of
observations. The number of observations can however have
effect on hyperparameters (e.g. weight regularization)

▶ σ-hot encoding is not the one-and-only proper encoding. For
example the squared version (i.e. variance) or 2 times σ could
also be used. The network should be capable of transitioning
different functions to the "right one"



Simulation Friedman function

We follow the simulation study for GLMMNet by Avanzi (2023)1:
▶ for each of 6 experiments we set triple (µf , σu, σϵ)

▶ µf ; fixed effects mean
▶ σu; random effects standard deviation
▶ σϵ; noise

▶ fixed effects Friedman function for x = (x1, · · · x10):
f (x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5
scaled to mean value µf across all observations

▶ additional random effects ui
iid∼ N (0, σ2

u) of 100 categories
▶ response distributions:

▶ Gaussian with identity-link, or
▶ Gamma with log-link
▶ corresponding dispersion parameter ϕ = σ2

ϵ

1statistics from that study are taken from GitHub and are plotted to
compare results



Simulation Friedman function

▶ distribution of 5,000 training and 2,500 testing observations:
▶ x1, · · · , x10

iid∼ U(0, 1)
▶ category balanced (∼ U(0, 1)) or skewed (∼ Beta(2, 3))

number of training observations by category

▶ each experiment contains 50 simulation runs



Simulation Friedman function

In (Avanzi, 2023) the simulation is performed on many models
besides GLMMNet. Among the best performing models were an
entity embedded neural network (NN_ee) and GPBoost.

We adopt a general architecture of Chilinski (2020) to model the
CDF of response variable y , using only 10 neurons:

x1

xn
y

σ F (y |x1,· · ·, xn)

The dashed arrows indicate non-negative weights to ensure a
non-decreasing CDF for every input. The neuron in the last layer
has sigmoid activation, other neurons have tanh activation.



Simulation Friedman function

Settings in simulation runs:
▶ optimization criterion: maximize log-likelihood
▶ Adam optimization (Kingma, 2014) with learning rate

α = 0.01 and 15,000 full iterations
▶ weights have absolute value ≤ 3, i.e. ∥W ∥∞ ≤ 3

Every simulation run is exercized on 3 models:
▶ model NN_nocats: ignoring categorical information
▶ model NN_1hot: 1-hot encoding without weight balancing
▶ model NN_σhot: σ-hot encoding with weight balancing



Simulation Friedman function

We use as evaluation criterion the average accuracy of point
predictions (Root Mean Squared Error) per category

RMSE_avg =

√√√√1
k

k∑
i=1

(ȳ∗i − ¯̂y
∗
i )

2

ȳ∗i and ¯̂y
∗
i are the observed and estimated averages per category of

the testing observations.

To get point predictions from the estimated CDF:
▶ calculate 100 quantiles for

q = 0.005, 0.015, 0.025, · · · , 0.985, 0.995
▶ F−1(q) is the outcome of a binary search (F is monotone)
▶ calculate the mean of all quantiles



Simulation Friedman function

Experiment 1: high signal-to-noise with (µf , σu, σϵ) =
1
6 · (4, 1, 1),

Gaussian response and balanced categories.
Experiment 2: same as 1, but Gamma response.

statistics experiment 1 statistics experiment 2

The results of 1-hot and σ-hot are comparable to other models.
There are no sparse categories and therefore σ-hot has at most a
small advantage above 1-hot.



Simulation Friedman function

Experiment 3: same as 1, but skewed categories.
Experiment 4: same as 1, but medium signal-to-noise with
(µf , σu, σϵ) =

1
7 · (4, 1, 2).

statistics experiment 3 statistics experiment 4

The performance of σ-hot is better than 1-hot in experiment 3 due
to the sparse categories.



Simulation Friedman function

Experiment 5: same as 1, but low signal-to-noise with
(µf , σu, σϵ) =

1
13 · (8, 1, 4).

Experiment 6: same as 5, but Gamma response and skewed
categories.

statistics experiment 5 statistics experiment 6

For the noisy and skew data of experiment 6 σ-hot has a clear
advantage above 1-hot.



Simulation disability insurance

Our second simulation example is insurance of disability after some
waiting period. We want to model the claim probability.
▶ categories can be thought of as industries, sectors and/or

occupation classes
▶ this application does not meet the assumptions of GLMMNet

and is therefore a good test case of the general setting of
σ-hot encoding and weight balancing

▶ this example makes credibility visible in detailed graphs and we
can therefore verify the meant properties of σ-hot encoding
and weight balancing



Simulation disability insurance

The individual claim probability is given by

p(claim) = α2 · eα1x + β2 · eβ1(x−β0)2 + γ2 · eγ1(x−γ0)2

where x is the (whole) age of the insured and the other parameters
are random effects of 18 categories:

▶ α1
iid∼ U(0.04, 0.05) and α2

iid∼ U(0.0025, 0.004)

▶ β0
iid∼ U(30, 40), β1

iid∼ U(−0.02, 0) and β2
iid∼ U(0, 0.0025)

▶ γ0
iid∼ U(65, 70), γ1

iid∼ U(−0.02, 0) and γ2
iid∼ U(−0.01, 0)

The second and third term add "local" age disturbances to the first
term, thereby creating variations of a standard exponential curve.



Simulation disability insurance

The distibution of 500,000 training and 500,000 testing
observations are:

x ∼ round(agemin + (agemax − agemin) ∗ x0)

x0 ∼ Beta(max(2 + δ, 2),max(2 − δ, 2))

▶ δ
iid∼ U(−2, 2) is another random category-effect, shifting the

population age density for each category
▶ agemin=18 and agemax=67 have fixed values
▶ category balanced (∼ U(0, 1)) or skewed (∼ Beta(2, 3))

We will perform two experiments. Experiment 1 has balanced
category sizes, experiment 2 has skewed category sizes. Each
experiment contains 50 simulation runs.



Simulation disability insurance

We use a standard architecture to model the probability of a claim
response with only 8 neurons:

x1

xn

σ P(claim |x1,· · ·, xn)

The neuron in the last layer has sigmoid activation, other neurons
have tanh activation. Changed settings in simulation runs:
▶ Adam learning rate α = 0.001
▶ weights have absolute value ≤ 1, i.e. ∥W ∥∞ ≤ 1

Every simulation run is exercised on the same 3 models as the
earlier Friedman case.



Simulation disability insurance

The outcomes of the two experiments are:

statistics experiment 1 statistics experiment 2

The results of 1-hot and σ-hot are comparably well in experiment 1,
due to the balanced category sizes. In experiment 2 there is only a
slight advantage in using σ-hot. The next slides contain detailed
graphs of the fit of the training observations.



Simulation disability insurance

results model NN_σhot experiment 1, cats 01 - 06



Simulation disability insurance

results model NN_σhot experiment 1, cats 07 - 12



Simulation disability insurance

results model NN_σhot experiment 1, cats 13 - 18



Simulation disability insurance

results model NN_σhot experiment 2, cats 01 - 06



Simulation disability insurance

results model NN_σhot experiment 2, cats 07 - 12



Simulation disability insurance

results model NN_σhot experiment 2, cats 13 - 18



Simulation disability insurance

The detailed age-curves of claim probability show the following
results:
▶ for bigger categories the estimated probabilities are closer to

the true probabilities
▶ for smaller categories the estimated probabilities tend more to

the all-categories total probabilities. This also yields for ages
with lower population densities

▶ the network adjusts well to the divers sizes of categories and
population densities

▶ relative small differences in statistics (like RMSE_avg) can
make significant differences in the estimated quality of small
categories



Implementation

▶ Julia is a relatively new language (2012) for scientific
programming

▶ Julia is fast and therefore "solves two-language-problem"
▶ all neural network functions and simulations were built in plain

Julia code

https://github.com/perunum/sigma-hot-encoding



Conclusions

The proposed σ-hot encoding and weight balancing provide a
general solution for credibility in network regression:
▶ they are applicable to all categorical variables
▶ they don’t need assumptions for randomization
▶ they don’t need extensions of the network structure
▶ they work well in combination with max-norm on weights
▶ combined with density estimation networks they complete a

general framework for actuaries
▶ they can broaden the application of credibility and therefore

increase the use of neural networks in the insurance industry



References

Avanzi, B., Taylor, G., Wang, M., & Wong, B. (2023). Machine
Learning with High-Cardinality Categorical Features in Actuarial
Applications. arXiv preprint arXiv:2301.12710.

Chilinski, P., & Silva, R. (2020, August). Neural likelihoods via
cumulative distribution functions. In Conference on Uncertainty
in Artificial Intelligence (pp. 420-429). PMLR.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Richman, R., & Wüthrich, M. V. (2023). High-Cardinality
Categorical Covariates in Network Regressions. Available at
SSRN 4549049.


