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Introduction

I The analysis of competing risk events is common place in statistical
analysis. It concerns the exposure of an individual to simultaneous events,
the occurrence of one of these is absorbing for the others. For example:

I Death due to several different causes;
I Policyholders’ lapse of an insurance contract, which may occur following termination

of the contract due to surrending, death or default on premium payment.

I Some (or all) events can be dependent, e.g. the lapse of an insurance
policy to cash the value of the policy to cover the medical expenses.
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Mathematical problem
I Aim: estimate the joint distribution of the time to M competing events

(T1, ...,TM). However, the researcher can only observe
T = min (T1, ...,TM), and the corresponding cause of decrement C ;

I Problem: given the available data this joint distribution cannot be
identified;

I =⇒ Further point identifying assumptions are thus needed, for example:
I T1, ...,TM are pairwise independent;
I Specify a copula model with known dependence parameter;
I Subdistribution approach.

I There is an increasing need for of flexible and adaptable statistical models
capable to handle complex problems, which can be interpretable at the
same time.
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The conditional independence model
I We assume that the time to each event are pairwise conditionally

independent given a latent vector θ for the ith unit. We obtain the
following joint density for (T1, ...,TM):

f (t1,i , . . . , tM,i) =
∫

Ωθ

M∏
c=1

fc (tc,i ; θi) dP (θi) (1)

=
∫

Ωθ

 M∏
c=1

fc (tc,i ; θc,i)
 dP (θ1,i , . . . , θM,i)

I The latent multivariate random vector θ = (θ1, . . . , θM) induces
dependence among T1, . . . ,TM . Its aim is to capture those latent features
which are hidden, whilst affecting the joint occurrence of the M risks.
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Dirichlet Process (1): Features

I A flexible specification for P (θ) is to assume it is a random draw from a
Dirichlet Process (DP)

P (θ) ∼ DP (φ,P0) (2)

where
I P0 is the base probability measure, e.g. P0 : N (mθ,Σθ);
I φ is the concentration parameter
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Dirichlet Process (DP): Introduction (2)
I A draw from a DP consists of a discrete probability distribution a.s., with

the following representation:

P (θ) =
∞∑

k=1
πkδθk (θ)

where {θk}∞k=1
iid∼ P0;

∞∑
k=1

πk = 1 and δθh (·) is the Dirac delta function.

I The construction is completed through the following characterization of
the mixture weights π1, π2, ..., as follows:

πk = ψk
k−1∏
j=1

(1− ψj) ; ψk
iid∼ Beta (1, φ)

This is also known as stick-breaking process (SBP, Sethuraman (1994))
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Dirichlet Process (2): The Polya urn representation

I The DP implies that the distribution of θn given θ(−n) = (θ1, . . . , θn−1)
can be characterized in terms of the Polya urn scheme
(Blackwell-MacQueen (1973)):

p (θn | θ1:n−1;φ,P0) ∝ 1
φ + n − 1

n−1∑
i=1

δθi (θn) + φ

φ + n − 1P0 (θn) . (3)

where δθ is the Dirac delta function.
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Dirichlet Process (2): The Polya urn representation

If we write θ∗1:n−1 = (θ∗1, . . . , θ∗J), J < n, as the set of unique values of θ1:n−1

θn | θ1, . . . , θn−1 ∼
Discrete (θ∗1, . . . , θ∗J) w.p. nj

n−1+φ , j=1,. . . ,J
P0 w.p. φ

n−1+φ
(4)

where nj are such that ∑j nj = n − 1, and denote the number of observations
which are equal to θ∗j .
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The Dirichlet Process Mixture
I The density for the ith unit can be written as a Dirichlet Process Mixture:

f (t1,i , . . . , tM,i) =
∫ M∏

c=1
fc (tc,i ; θi) dP (θi) (5)

=
∞∑

k=1
πk

 M∏
c=1

fc
(
tc.i ; θ∗c,k

)

In this way, we aim at carrying out statistical inferences which are robust
with respect to misspecification;

I Unit cause-specific covariates xc,i can be easily included:

f (t1,i , . . . , tM,i | x1,i , . . . , xM,i) =
∞∑

k=1
πk

 M∏
c=1

fc
(
tc,i | xc,i ; θ∗c,k

) (6)
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Data - The uslapseagent data set

I 29,317 Whole life insurance policies (75% training set, 25% test set),
from the R package CASdatasets (Dutang and Charpentier (2020));

I Observation period: 1st January 1995- 31th December 2008;
I Time to event in quarters for M = 3 causes of decrement:

I Surrending (C = 1);
I Death (C =2);
I Other (C =3)
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Model

Milhaud and Dutang (2018) emphasize the need to focus on the time to
surrending as this is relevant to recover the initial expenses.

I For each cause c = 1, . . . ,M, we assume

Yc = ln Tc = βcxc,i + θc,i + εc,i εc,i ∼ N
(
0, σ2

c
)
, (7)

where xc,i is the vector of individual cause-specific covariates, βc is the
vector of regression coefficients and

θi = (θ1,i , . . . , θM,i) ∼ P (8)
P ∼ DP (φ,MVN (mθ,Σθ))
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Model - Set of covariates

Surrending Death Others
Annual Premium (std) Gender Annual Premium

Accidental D. Rider (Yes) UW Age Premium frequency
DJIA Living place Accidental D. Rider

UW Age (0-54/55+) Smoking
Gender

Premium Frequency (Ann/Infr.)
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Full Bayesian specification
I Furthermore, to complete the full Bayesian specification:

φ ∼ Ga (1, 1) (9)
mθ ∼ MVN (Λ1, 9I) ; (10)
Σθ ∼ Inv-Wish (Λ3,Λ4) (11)
βc,p ∼ N (0, 9) c = 1, . . . ,M; p = 1, . . . , pc (12)
σ2

c ∼ Inv-Gamma (1, 1) (13)

I Therefore parameters can be easily drawn in closed form within a Data
Augmentation (to cope with censoring of the other failure times) MCMC
scheme.
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Model analysis - Regression coefficients

Table 1: Posterior summaries of βsurr.

Parameter Mean 95% CI
Annual Premium −0.0411 (−0.0514; −0.0306)
DJIA −0.6450 (−0.6563; −0.6351)
Acc. death rider (Yes) 0.0534 (0.0233; 0.0883)
Gender (Female) 0.0310 (0.0095; 0.0501)
Paym. freq. (Annual and over) 0.0744 (0.0540; 0.0964)
Underwriting Age (less than 55yo) −0.1036 (−0.1379; −0.0733)
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Model analysis - Dependent time to event

We sample a large number of log-time to events Y , conditional on sampled
mixture allocation component S, using the posterior mean of the parameters.
Table 2: Linear, Spearman and Kendall correlation coefficients between YSurr, YDeath and
YOther.

Linear Spearman Kendall
Surrending - Death 0.325 0.325 0.217
Surrending - Other 0.297 0.297 0.197
Death - Other 0.889 0.726 0.532

15 / 22



Posterior predictive density for time to surrending

f (t̃surr | x̃ ; data) =
∫

f (t̃surr | x̃ ; ∆)︸ ︷︷ ︸
kernel

p (∆ | data)︸ ︷︷ ︸
posterior

d∆ (14)
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Figure 1: Posterior predictive density
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Prediction of surrending rates (by quarter)

Surrending rate estimation by quarter sq (using posterior mean of parameters):

r̂q = 1
nsq

∑
i∈Rsq

P̂r (sq < T1,i ≤ sq+1,Ci = 1 | T1,i > sq,X1, . . . ,X3) (15)

where nsq is the size of at-risk population Rsq .
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Prediction of surrending rates (Rolling RMSE by quarter)

R-RMSEQ =

√√√√√ 1
Q

Q∑
q=1

(
r̂Model
q − rEmpirical

q
)2

(16)
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Composition of classes
I It can be possible to investigate the probability of the classes Si , by using

the Bayes’ formula. Using posterior mean of the parameters, we have the
individual posterior probability of each class

qi ,k = Pr (Si = k | ti , x1,i , . . . , xM,i ; ) (17)

=
πk

M∏
c=1

fc
(
ti | xc,i ; θ∗c,k

)dc,i (1− Fc
(
ti | xc,i ; θ∗c,k

))1−dc,i

K∑
j=1

πj
M∏

c=1
fc
(
ti | xc,i ; θ∗c,j

)dc,i (1− Fc
(
ti | xc,i ; θ∗c,j

))1−dc,i



I The Bayes’ rule hard assigns each individual to a specific class, by setting
si = k if qi ,k > qi ,j for j 6= k
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Analysis of classes

Group 2 Group 4 Group 11 Group 15 Train. sample
% Composition 57.7 8.2 4.3 8.3 −
Annual Prem. (mean in $) 536.83 648.02 641.64 650.68 560.88
Accidental D. Rider (Yes in %) 17.4 14.0 13.8 12.5 16.4
Pr. Freq. (Ann+Oth in %) 41.8 30.4 34.9 29.8 38.9
UW Age (0-54 in %) 80.4 84.5 84.1 84.8 81.4
Surrending ( in %) 14.7 100 100 92.5 38
θ∗Surr 4.11 2.57 1.76 3.19 −
θ∗Death 5.00 4.48 4.03 2.02 −
θ∗Other 4.90 4.39 3.78 3.91 −
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Conclusions
I The DPM allows for a flexible specification and identifiable joint model for

the time to competing risk events;

I Despite the simplicity of the parametric specification of the distribution of
the time to event, this turns out to improve the predictive performance for
the held-out dataset and to carry out robust statistical inferences;
I The simple log-linear model is amenable of further improvements (e.g. a nonlinear

regression model, generalized additive model);
I Induction of a sparse prior to perform variable selection;

I The model can be easily estimated by means of a fully Bayesian analysis
which may account for the prior information of the researcher;

I An analysis of grouped units can be obtained as by-product to obtain
further insight on the further unobserved sources of heterogeneity.
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