Mortality forecasting via multi-task neural networks

Insurance Data Science Conference

19 June 2024

Luca De Mori, Steven Haberman, Pietro Millossovich, Rui Zhu

Bayes Business School City, University of London

Contents

Introduction

Methodology

Results

Conclusions

References

Current Section

Introduction

Methodology

Results

Conclusions

References

Research's aim: forecasting simultaneously the mortality rates of populations that are to some degree related in order to provide coherent forecasts.

Research's aim: forecasting simultaneously the mortality rates of populations that are to some degree related in order to provide coherent forecasts. Approach previously studied:

• Feed-forward single-task neural networks proposed by Richman and Wüthrich (2021).

Research's aim: forecasting simultaneously the mortality rates of populations that are to some degree related in order to provide coherent forecasts. Approach previously studied:

- Feed-forward single-task neural networks proposed by Richman and Wüthrich (2021).
- They generally perform well but have poor forecasting performances for populations that show different mortality trends with respect to the rest of the populations in the pool.

We want to implement an alternative deep-learning approach that avoids or mitigates the problem previously mentioned:

 Multi-task neural networks allow leveraging helpful information contained in multiple related tasks to help improve the generalization performance of all the tasks.

We want to implement an alternative deep-learning approach that avoids or mitigates the problem previously mentioned:

- Multi-task neural networks allow leveraging helpful information contained in multiple related tasks to help improve the generalization performance of all the tasks.
- The structure of these multi-task neural networks also reflects past mortality trends through the grouping of the populations considered into clusters.

Their hierarchical structure enables the deep network to explore the general pattern of:

all countries together

Their hierarchical structure enables the deep network to explore the general pattern of:

- all countries together
- each cluster of highly related countries

Their hierarchical structure enables the deep network to explore the general pattern of:

- all countries together
- each cluster of highly related countries
- specific countries.

Current Section

Introduction

Methodology

Results

Conclusions

References

Methodology - multi task NN

We considered 10 different countries and implemented a multi-task neural network (MT1) with 10 different tasks.

Methodology - multi task NN

We considered 10 different countries and implemented a multi-task neural network (MT1) with 10 different tasks.

 Each task consists of predicting the mortality rates for one of the 10 countries.

Methodology - multi task NN

We considered 10 different countries and implemented a multi-task neural network (MT1) with 10 different tasks.

- Each task consists of predicting the mortality rates for one of the 10 countries.
- 3 shared hidden layers with 128, 128 and 64 neurons, respectively, and Tanh activation function.

Methodology - multi task NN

We considered 10 different countries and implemented a multi-task neural network (MT1) with 10 different tasks.

- Each task consists of predicting the mortality rates for one of the 10 countries.
- 3 shared hidden layers with 128, 128 and 64 neurons, respectively, and Tanh activation function.
- 10 country-specific hidden layers with 32 neurons and Tanh activation function.

Methodology - multi task NN

Figure 1: MT1 structure.

Methodology - single task NN

Figure 2: Example of single-task neural networks proposed by Richman and Wüthrich (2021).

Methodology - multi task NN

We implemented four additional multi-task NNs, MT2 and MT3 (MT4 and MT5), with:

• Clustering by country in the third shared hidden layer.

Methodology - multi task NN

We implemented four additional multi-task NNs, MT2 and MT3 (MT4 and MT5), with:

- Clustering by country in the third shared hidden layer.
- Clustering of the 10 countries using k-means technique based on M and F life expectancy (standard deviation) changes in the training period.

Methodology - multi task NN

We implemented four additional multi-task NNs, MT2 and MT3 (MT4 and MT5), with:

- Clustering by country in the third shared hidden layer.
- Clustering of the 10 countries using k-means technique based on M and F life expectancy (standard deviation) changes in the training period.
- The 10 country-specific hidden layers are the same as MT1 and the activation function is Tanh for all the layers.

Methodology - multi task NN

MT1		MT2		MT3		
Country	Cluster	Country	Cluster	Country	Cluster	
Australia Canada England & Wales France Italy	1	Australia Canada England & Wales France Italy	1	England & Wales France Italy Spain Sweden	1	
Japan	1	Netherlands		Japan	2	
Netherlands Spain Sweden USA		Spain Sweden USA Japan	2	Australia Canada Netherlands USA	3	

MT4

MT5

Country	Cluster	Country	Cluster
France England & Wales Italy Netherlands	1	France England & Wales Italy Netherlands	1
Australia Canada Japan Spain	2	Canada Japan Sweden USA	2
Sweden USA		Australia Spain	3

Figure 3: Clustering results.

Methodology - multi task NN

Figure 4: MT2 structure.

Methodology - multi task NN

Figure 5: MT3 structure.

Current Section

Introduction

Methodology

Results

Conclusions

References

Dataset considered:

• 10 countries: Australia, Canada, England&Wales, France, Italy, Japan, Netherlands, Spain, Sweden, USA.

Dataset considered:

- 10 countries: Australia, Canada, England&Wales, France, Italy, Japan, Netherlands, Spain, Sweden, USA.
- Male and female populations.

Dataset considered:

- 10 countries: Australia, Canada, England&Wales, France, Italy, Japan, Netherlands, Spain, Sweden, USA.
- Male and female populations.
- Age interval: 55-89.

Dataset considered:

- 10 countries: Australia, Canada, England&Wales, France, Italy, Japan, Netherlands, Spain, Sweden, USA.
- Male and female populations.
- Age interval: 55-89.
- Training (test) periods: from 1950-1979 (1980-1994) to 1975-2004 (2005-2019).

Dataset considered:

- 10 countries: Australia, Canada, England&Wales, France, Italy, Japan, Netherlands, Spain, Sweden, USA.
- Male and female populations.
- Age interval: 55-89.
- Training (test) periods: from 1950-1979 (1980-1994) to 1975-2004 (2005-2019).

Training hyperparameters:

• Loss function = MSE, #epochs = 200, Optimizer = Adam.

Results

Metrics considered:

Truncated life expectancy

$$\mathring{e}_{55:\overline{35},t} = \sum_{j=1}^{35} {}_{j-1} p_{55,t} (1 - \frac{1}{2} q_{55+j-1,t})$$

Results

Metrics considered:

Truncated life expectancy

$$\mathring{e}_{55:\overline{35}|,t} = \sum_{j=1}^{35} {}_{j-1} p_{55,t} (1 - \frac{1}{2} q_{55+j-1,t})$$

Truncated standard deviation

$$sd_{55:\overline{35}|,t} = \sqrt{\sum_{x=0}^{34} {}_{x|1}q_{55,t} (x - \mathring{e}_{55:\overline{35}|,t})^2 + {}_{35}p_{55,t} (35 - \mathring{e}_{55:\overline{35}|,t})^2}$$

Results

Metrics considered:

Truncated life expectancy

$$\mathring{e}_{55:\overline{35}|,t} = \sum_{j=1}^{35} {}_{j-1} p_{55,t} (1 - \frac{1}{2} q_{55+j-1,t})$$

Truncated standard deviation

$$sd_{55:\overline{35},t} = \sqrt{\sum_{x=0}^{34} x_{|1}q_{55,t} (x - \mathring{e}_{55:\overline{35},t})^2 + 35p_{55,t} (35 - \mathring{e}_{55:\overline{35},t})^2}$$

Benchmarks:

• Feed-forward single-task neural networks proposed by Richman and Wüthrich (2021).

Results

Figure 6: Summary of the life expectancy MAFEs by neural network.

Results

Figure 7: Summary of the standard deviation MAFEs by neural network.

Results

	MT1	MT2	MT3	MT4	MT5	DEEP1	DEEP2	DEEP3	DEEP4	DEEP5	DEEP6
AUS	5	6	5	6	3	5	1	9	7	11	9
CAN	4	4	5	5	4	9	1	10	7	11	7
ENG&WL	5	4	4	5	3	8	1	9	6	11	9
FRA	3	4	4	4	4	9	7	10	6	10	9
ITA	4	6	4	6	3	9	1	10	6	11	7
JPN	4	4	3	3	3	9	6	10	7	11	8
NLD	4	4	5	4	6	9	4	10	5	11	2
ESP	4	5	3	3	3	9	6	10	6	11	8
SWE	3	3	5	4	5	9	4	10	8	11	6
USA	3	4	4	4	5	9	8	10	7	11	3

Figure 8: Median ranking by country (life expectancy).

Results

	MT1	MT2	MT3	MT4	MT5	DEEP1	DEEP2	DEEP3	DEEP4	DEEP5	DEEP6
AUS	3	3	3	4	5	11	3	9	7	10	8
CAN	4	3	2	5	4	11	5	9	7	10	6
ENG&WL	3	3	2	4	4	11	6	9	7	10	6
FRA	5	4	4	4	6	11	6	9	5	10	1
ITA	5	4	3	5	5	11	5	9	5	10	5
JPN	5	6	5	5	6	11	5	9	3	10	1
NLD	5	4	3	4	5	11	4	9	7	10	3
ESP	5	4	4	5	6	11	5	9	3	10	2
SWE	5	4	3	5	5	11	5	9	7	10	3
USA	4	3	3	4	5	11	8	9	7	10	4

Figure 9: Median ranking by country (standard deviation).

Current Section

Introduction

Methodology

Results

Conclusions

References

Main findings:

• Overall, the proposed multi-task neural networks outperform the benchmark NNs in terms of average MAFE for both life expectancy and standard deviation.

Main findings:

- Overall, the proposed multi-task neural networks outperform the benchmark NNs in terms of average MAFE for both life expectancy and standard deviation.
- Multi-task neural networks also perform notably better in countries with unusual mortality trends such as Japan and the US.

Main findings:

- Overall, the proposed multi-task neural networks outperform the benchmark NNs in terms of average MAFE for both life expectancy and standard deviation.
- Multi-task neural networks also perform notably better in countries with unusual mortality trends such as Japan and the US.

Next steps:

• Analyse how a wider range of countries impacts the forecasting performances.

Main findings:

- Overall, the proposed multi-task neural networks outperform the benchmark NNs in terms of average MAFE for both life expectancy and standard deviation.
- Multi-task neural networks also perform notably better in countries with unusual mortality trends such as Japan and the US.

Next steps:

- Analyse how a wider range of countries impacts the forecasting performances.
- Use a different input (e.g. gender) as multi-task variable.

Main findings:

- Overall, the proposed multi-task neural networks outperform the benchmark NNs in terms of average MAFE for both life expectancy and standard deviation.
- Multi-task neural networks also perform notably better in countries with unusual mortality trends such as Japan and the US.

Next steps:

- Analyse how a wider range of countries impacts the forecasting performances.
- Use a different input (e.g. gender) as multi-task variable.
- Cluster with a different machine learning technique rather than k-means.

References

Current Section

Introduction

Methodology

Results

Conclusions

References

References

References

[1] Michael Crawshaw.

Multi-task learning with deep neural networks: A survey. *arXiv preprint arXiv:2009.09796*, 2020.

[2] Abhijit Ghatak.

Deep learning with R.

Springer, 2019.

[3] Ronald Richman and Mario V Wüthrich.

A neural network extension of the lee–carter model to multiple populations.

Annals of Actuarial Science, 15(2):346–366, 2021.

[4] Yu Zhang and Qiang Yang.

A survey on multi-task learning.

IEEE Transactions on Knowledge and Data Engineering, 2021.

References

Thank you for your attention.