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Overview

There is an increasing interest in further developing experience rating.

Table of contents:

• Prior information rating

• Posterior rating: static case

• Posterior rating: dynamic case

• Deep experience rating
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• Section 1: Prior information rating
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Best-estimate (actuarial fair) pricing

• Aim: Price an insurance claim Y based on prior rating information x.

• Prior rating information x is available at the inception of the insurance contract,
e.g., age of policyholder, place of living, price of insured object, etc.

• Prior rating information is also called covariates or (static) features.

• Best-estimate price for claim Y , given prior rating information x,

x 7→ µ(x) = E [Y |x] .

• Actuarial task: Estimate this pricing functional (using past data).

• Popular approaches: generalized linear models (GLMs) or neural networks.
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• Section 2: Posterior rating: static case
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Experience rating

• What if past claims history Y1:t = (Y1, . . . , Yt) is available to predict Yt+1?

• Posterior/experience rating considers

µpost
Yt+1|Y1:t

= E [Yt+1|Y1:t,x1:t+1],

or if no prior rating information is available

µpost
Yt+1|Y1:t

= E [Yt+1|Y1:t].

• This is also known as random effects modeling.

• Such models are useful if there is dependence between Yt+1 and Y1:t.

• This dependence can be of a static or of a dynamic nature.
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Random effects: static case

• The most popular experience rating models belong to the exponential dispersion
family (EDF) with conjugate priors; Bichsel (1964), Jewell (1974).

• The Bühlmann–Straub (BS) model (1970) gives a linear (credibility) approximation
in case of intractable posterior distributions.

• The BS model essentially assumes for all time periods 1 ≤ s ≤ t+ 1

E [Ys|Θ] = µ(Θ),

with common latent (risk) factor Θ (+ conditional independence assumptions).

• This is the static case as the latent factor Θ does not dependent on time s.

• For experience rating we need to compute Bayes’ formula

µpost
Yt+1|Y1:t

= E [Yt+1|Y1:t] = E [µ(Θ)|Y1:t].
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Bühlmann–Straub credibility estimator

• The BS credibility estimator is given by

µ̂post
Yt+1|Y1:t

= ωtȲt + (1− ωt)µ0,

with credibility weights and observation based estimators, respectively,

ωt =
t

t+ κ
and Ȳt =

1

t

t∑
s=1

Ys,

and prior mean µ0 = E[Yt+1] and credibility coefficient κ ≥ 0.

• No seniority weighting of past claims Ys; Pinquet et al. (2001).

• Issue: Static latent factor Θ makes past claims Y1:t exchangeable.
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Accuracy of successive 1-period ahead forecasting
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• Section 3: Posterior rating: dynamic case
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Static vs. dynamic random effects

• Static random effects: Responses (Yt)t≥1 depend on static latent factor Θ.

• Dynamic random effects: Responses (Yt)t≥1 depend on latent process (Θt)t≥1.

• Best known dynamic random effects model: Kalman filter (1960) type

This model is parameter-driven, meaning that the model parameters fully specify
the dynamics of the latent state-space process (Θt)t≥1.
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Observation-driven dynamic random effects

• Observation-driven dynamic random effects models have been introduced by
Harrison–Stevens (1976), Smith–Miller (1986), Harvey–Fernandes (1989).

• Observation-driven dynamic random effects models have a feedback loop:

• Harvey–Fernandes’ (1989) proposal has an explosive long-term variance behavior.

• Ahn et al. (2023) extend this to different long-term variance behaviors in the
Poisson-gamma conjugate prior case (this model is analytically tractable).
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Poisson-gamma dynamic case (1/2)

(1) Observation equation:

Yt|{Θ1:t,Y1:t−1} ∼ Poi (µΘt).

(2) Bayesian inference:

Θt|{Θ1:t−1,Yt} ∼ Γ (αt + Yt, βt + µ).

(3) Transition equation (Kalman filter):

Θt+1|{Θ1:t,Y1:t} ∼ Γ
(
αt+1(Θ1:t), βt+1(Θ1:t)

)
,

with scale and shape parameters βt+1 and αt+1.
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Poisson-gamma dynamic case (2/2)

(1) Observation equation:

Yt|{Θ1:t,Y1:t−1} ∼ Poi (µΘt).

(2) Bayesian inference:zzzzzzzzzzzzzzzz

Θt|Y1:t
∼ Γ (αt + Yt, βt + µ).

(3) Observation-driven state-space update:

Θt+1|Y1:t
∼ Γ

(
αt+1(Y1:t), βt+1

)
,

with deterministic scale βt+1 and shape parameter αt+1(Y1:t).

17



Construction of step (3): state-space update

• Lukacs (1955): For independent random variables (with appropriate parameters)

Θ ∼ Γ and B ∼ Beta =⇒ ΘB ∼ Γ.

This allows for thinning in a gamma process.

• Observation-driven state-space update Θt → Θt+1: Additionally, choose an
independent gamma noise η ∼ Γ (with appropriate parameters)

Θt+1|Y1:t
=

ΘtB

q
+ η

∣∣∣∣
Y1:t

∼ Γ (αt+1, βt+1) ,

with parameter updates

βt → βt+1 = q (βt + µ) > 0,

αt → αt+1 = pq (αt + Yt) + (1− p)βt+1 > 0.

for given constants p, q ∈ (0, 1].
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Long-term behavior

• This model is mean-stationary: E[Θt] = 1 for all t ≥ 1.

• Explosive variance case: p = 1 and q < 1

lim
t→∞

Var(Θt) = ∞.

• Vanishing variance case: p < 1 and q = 1

lim
t→∞

Var(Θt) = 0.

• Bounded variance case: p < 1 and q < 1

inf
t
Var(Θt) > 0 and sup

t
Var(Θt) < ∞.
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Log-likelihood and model fitting

• The log-likelihood is fully tractable

ℓY1:t =

t∑
s=1

log

(
Γ (αs + Ys)

Γ (αs)Ys!

(
1− µ

βs + µ

)αs
(

µ

βs + µ

)Ys
)
.

• These are negative binomial (marginal) models with αs = αs(Y1:s−1).

• This is an integer-valued auto-regressive (INAR) negative binomial model.

• We can perform empirical Bayes’ fitting.

21



Recursive credibility formula

• We get a closed form recursive experience rating formula

µpost
Yt+1|Y1:t

= E [Yt+1|Y1:t] =
αt+1

βt+1
µ

= p

(
ωt Yt + (1− ωt)

αt

βt
µ

)
+ (1− p)µ,

with (deterministic) credibility weights

ωt =
µ

µ+ βt
∈ (0, 1).

• This provides seniority weighting of past claims, e.g., for p < 1.
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Accuracy of successive 1-period ahead forecasting
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• Section 4: Deep experience rating
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(Deep) attention weights

• Consider a linear (deep) attention approach

µpost
Yt+1|Y1:t

=

t∑
s=1

ωt,s Ys +

(
1−

t∑
s=1

ωt,s

)
µ(xt+1),

with (1-bounded) attention weights

x1:t+1 7→ ωt,s = ωt,s(x1:t+1) ∈ (0, 1).

• This has the structure of an attention layer using a key, query and value; see
Vaswani et al. (2017).

• This approach is distribution-free: fitting requires a strictly consistent loss function
for mean estimation, see Gneiting (2011).
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Accuracy of successive 1-period ahead forecasting
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Seniority weighting of past claims
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Conclusions

• Past claims have predictive power.

• Experience rating: past claims should receive a seniority weighting.

• Seniority weighting can be received in dynamic random effects models.

• There are tractable observation-driven dynamic random effects models.

• Distribution-free deep experience rating is based attention mechanisms.

• Attention mechanism also allows for non-linear credibility considerations.

• Distribution-free approaches require careful selection of objective functions for
model fitting and mean estimation.

• We have only focused on predictive power and not on commercial pricing.
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[3] Bühlmann, H., Straub, E. (1970). Glaubwürdigkeit für Schadensätze. Bulletin of the Swiss Association of Actuaries

70, 111-131.

[4] Gneiting, T. (2011). Making and evaluating point forecasts. Journal of the American Statistical Association

106/494, 746-762.

[5] Harrison, P.J., Stevens, C.F. (1976). Bayesian forecasting. Journal of the Royal Statistical Society: Series B 38/3,
205-228.

[6] Harvey, A.C., Fernandes, C. (1989). Time series models for count or qualitative observations. Journal of Business
and Economic Statistics 7/4, 407-417.

[7] Jewell, W.S. (1974). Credible means are exact Bayesian for exponential families. ASTIN Bulletin 8, 77-90.

[8] Kalman, R.E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering
82/1, 35-45.

[9] Lukacs, E. (1955). A characterization of gamma distribution. The Annals of Mathematical Statistics 26/2, 319-324.
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[13] Wüthrich, M.V. (2024). Experience Rating for Insurance Pricing. SSRN Manuscript ID 4726206.

30


