Cyber risk modeling using a twophase Hawkes Process with external excitation

Yousra Cherkaoui, Milliman R&D - CREST Ensae

Joint work with :

Alexandre Boumezoued, Milliman R&D Caroline Hillairet, CREST Ensae

Insurance Data Science June 18th, 2024

Agenda

- Context
- Cyber risk modelling using Hawkes processes with vulnerabilities
- Cyber attacks and vulnerability databases
- Calibration results of the One-Phase Hawkes process
- Response measures using the second phase of the Hawkes process
- Future research questions

- Various types of attacks (ransomware, phishing, DoS...)
- Focus on contagious cyber incidents, by taking into account the exploitation of cyber vulnerabilities (exogenous excitation)
- Regular publications of vulnerabilities that may cause cyber pandemics : EternalBlue (Wannacry, NotPetya), Log4Shell etc
- Quantifying impact of protection measures to limit the effect of a cyber attack (patching vulnerabilities for instance)

Cyber risk frequency modeling

Objectives

Grasp internal excitations through Hawkes frequency process

Bessy-Roland, Y., Boumezoued, A., & Hillairet, C. (2021). Multivariate Hawkes process for cyber insurance. Annals of Actuarial Science, 15(1), 14-39. Frequency modelling using Hawkes processes Add external excitation into the modelling : vulnerabilities publication that may trigger cyber attacks

Dassios, A., & Zhao, H. (2011). A dynamic contagion process. Advances in applied probability, 43(3), 814-846.

Model the reaction measures using a two-phase Hawkes proces

Chen, Z., Dassios, A., Kuan, V., Lim, J. W., Qu, Y., Surya, B., & Zhao, H. (2021). A two-phase dynamic contagion model for COVID-19. Results in Physics, 26, 104264.

Cyber risk modelling

A Two-Phase Hawkes process with external excitation

Cyber databases

Hackmageddon and NVD databases

identifier

Calibration of the one-phase Hawkes process

Calibration results

Model	Vuln. database	λ_0	ρ	\overline{m}	m	δ	$ \phi $
No external events	-	2.7031	-	-	0.9182	1.5047	0.61
	95% C.I	[2.4863,2.9199]	-	-	[0.8608, 0.9756]	[1.1723, 1.8371]	<u> </u>
With external events	Hackmageddon	2.7081	0.3636	0.5941	0.8891	1.5080	0.58
	95% C.I	[2.4873,2.9289]	[0.3180, 0.4092]	[0.3484, 0.8398]	[0.6909, 1.0873]	[1.1649, 1.8511]	-
With external events	KEV	2.6964	0.5057	0.9774	0.8529	1.5061	0.56
	95% C.I	[2.4229, 2.9699]	[0.4527, 0.5587]	[0.4388, 1.2282]	[0.6734, 1.1048]	[1.1921, 1.8239]	÷
With external events	NVD	2.4195	48.849	0.077413	0.67139	1.8697	0.36
	95% C.I	[2.1573,2.6817]	[48.2987,49.1993]	[0.01211,0.1427]	[0.4985,0.8442]	[1.3998,2.3396]	-

Distribution of the number of attacks predicted in one year NVD, Hackmageddon and KEV databases for vulnerabilities

- || φ || (the endogeneity degree of the system) represents the average number of attacks an attack will lead to.
- $\| \phi \|$ is nearly halved between the model with no external excitation and the model with the external excitation taken from the NVD database.
- The distributions seem to capture the dynamics of cyber attacks in 2022 for the Hackmageddon database.
- The distribution of the number of attacks with vulnerabilities from the NVD database has the smallest variance.
- This **decrease in variance** has significant implications in **insurance reserve calculations**, for example.

Response measures using the second phase of the process

Parameters selection

For t>
$$\ell$$
 > s:

$$\mathbb{E}[N_{\ell}|\mathcal{F}_{s}] = \begin{cases} \mathbb{E}[N_{\ell}|\mathcal{F}_{s}] + \frac{\alpha_{0}\delta\lambda_{0}}{2}(t-\ell)^{2} + \lambda_{0}(\alpha_{0} - \alpha_{1})(t-\ell) + \alpha_{1}\mathbb{E}[\lambda_{\ell} - |\mathcal{F}_{s}](t-\ell) & \text{if } \delta = m^{al} \\ \mathbb{E}[N_{\ell}|\mathcal{F}_{s}] + \frac{\alpha_{0}\delta\lambda_{0}}{\delta - m^{al}}(t-\ell) + \left((\alpha_{0} - \alpha_{1})\lambda_{0} + \alpha_{1}\mathbb{E}[\lambda_{\ell} - |\mathcal{F}_{s}] - \frac{\alpha_{0}\delta\lambda_{0}}{\delta - m^{al}}\right) \frac{1}{(\delta - m^{al})}\left(1 - e^{-(\delta - m^{al})(t-\ell)}\right) & \text{if } \delta \neq m^{al} \\ \end{cases}$$

• Fictional insurer with a limited reaction capacity of 5 policyholders each day
• Compute the adequate response parameters such that the response capacity is not exceeded on average

Future research questions

Paper available at :

- Extension to the delay kernel and random marks
- Develop statistical classification and regression models (such as CART trees) whose classification criterion is based on the excitation of Hawkes processes

