SCOR The Art & Science of Risk

Accelerated Underwriting and, Underwriting with Partial Information IDSC 2024

Jayant Apte, Antoine Ly

Data Analytics Solutions, Scor

Accelerated Underwriting and, Underwriting with Partial Information High Level Positioning

- Algorithmic Underwriting refers to the use of computational algorithms, external data sources, and Big Data solutions to inform an underwriting decision
 - We are interested in the use of machine learning techniques for predictive modeling to improve some KPI associated with life insurance underwriting
 - We are interested in using historical, policy level, life insurance claims (events) data
 - Specifically, we are talking about the kind of data that is generated by life insurance underwriting systems in United States over the span of last 20 years

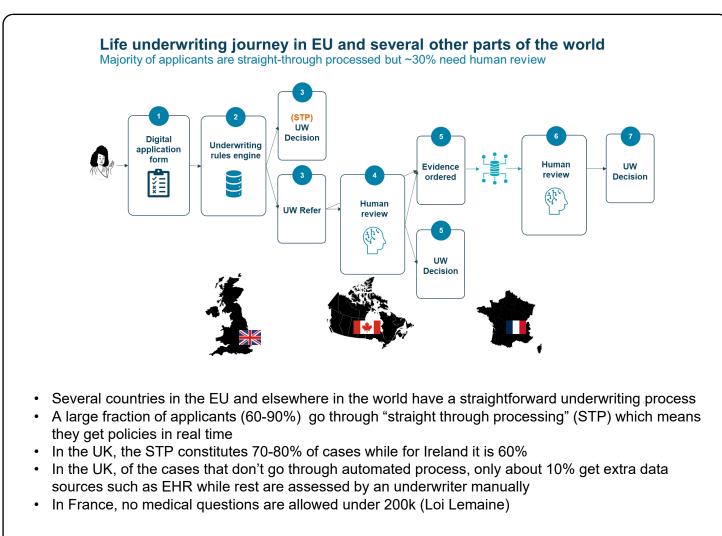
Accelerated Underwriting and, Underwriting with Partial Information High Level Positioning

- Algorithmic Underwriting refers to the use of computational algorithms, external data sources, and Big Data solutions to inform an underwriting decision
 - We are interested in the use of machine learning techniques for predictive modeling to improve some KPI associated with life insurance underwriting
 - We are interested in using historical, policy level, life insurance claims (events) data
 - Specifically, we are talking about the kind of data that is generated by life insurance underwriting systems in United States over the span of last 20 years

Accelerated Underwriting and, Underwriting with Partial Information High Level Positioning

- Algorithmic Underwriting refers to the use of computational algorithms, external data sources, and Big Data solutions to inform an underwriting decision
 - We are interested in the use of machine learning techniques for predictive modeling to improve some KPI associated with life insurance underwriting
 - We are interested in using historical, policy level, life insurance claims (events) data
 - Specifically, we are talking about the kind of data that is generated by life insurance underwriting systems in United States over the span of last 20 years
 - We are interested in creating a high-level conceptual framework for insurers to use when thinking about historical claims data and its applications
 - We want to understand and solve various challenges one may encounter when using such data to learn machine learning models

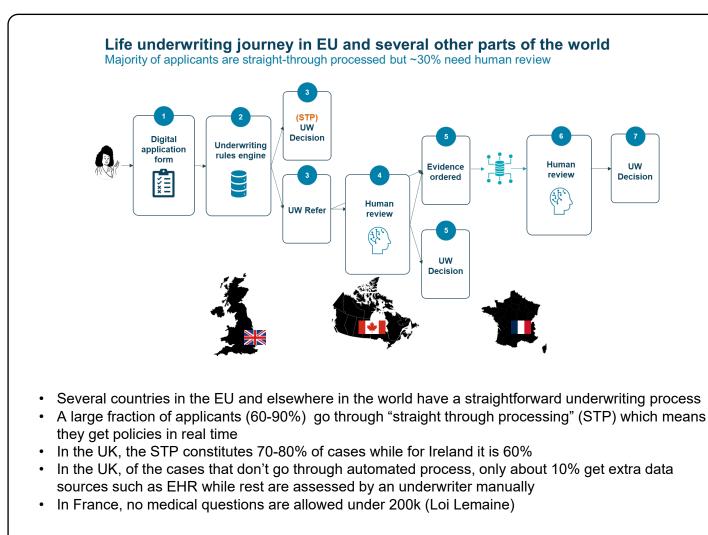
Global Context



Accelerated Underwriting and Underwriting with Partial Information

6

Global Context



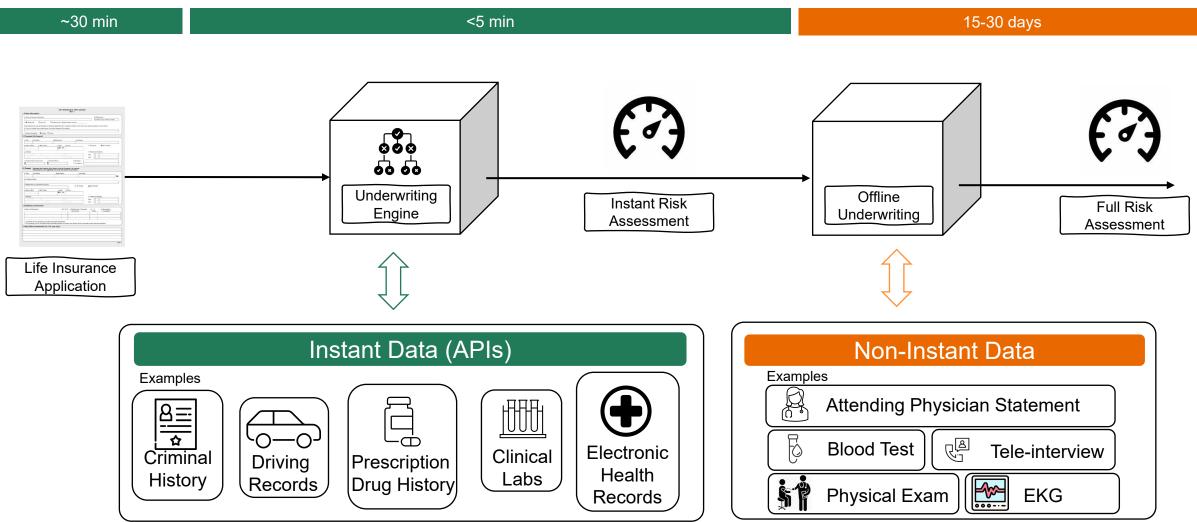
- Insurers can order third party vendor data via web APIs
- >10 types of data can be ordered
- Tens of data vendors
 providing on-demand data

7

Accelerated Underwriting and, Underwriting with Partial Information Agenda

- Introduction to Accelerated Underwriting (AU) works today
- Introduction to evidence waiver models
- How to use life insurance claims data to learn waiver models
- Challenges and methods

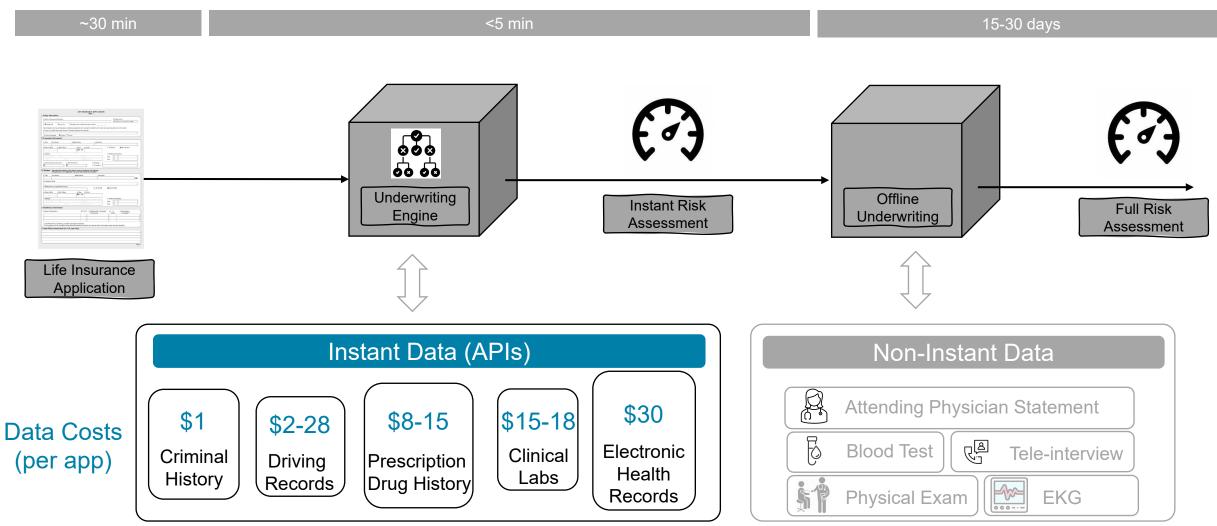
Algorithmic Underwriting & Accelerated Underwriting (AU) Programs in US Life Market

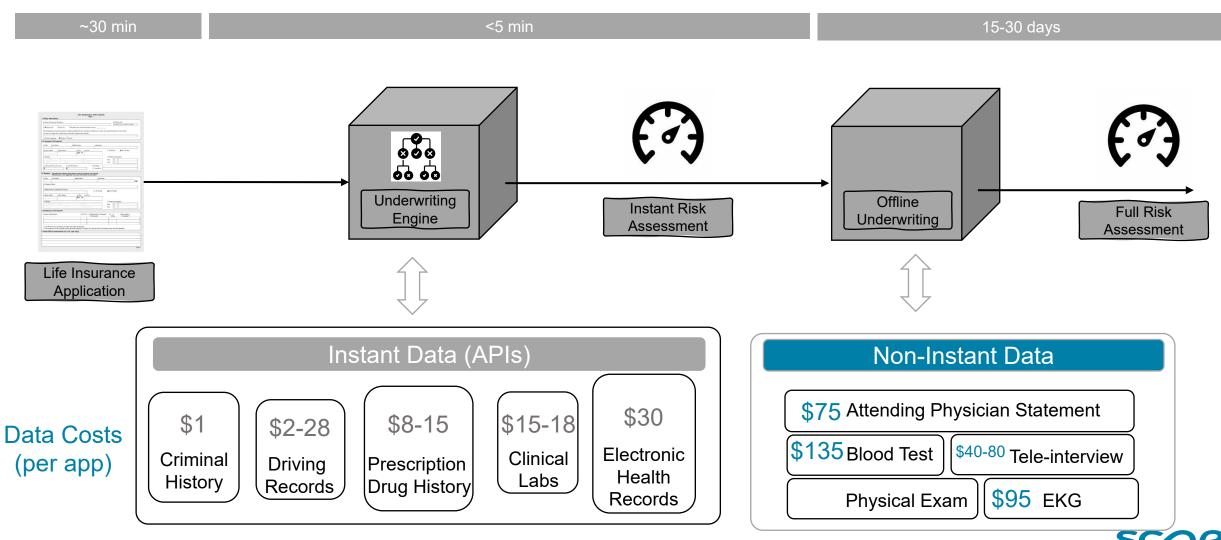


Accelerated Underwriting and Underwriting with Partial

10

SCOR The Art & Science of Risk

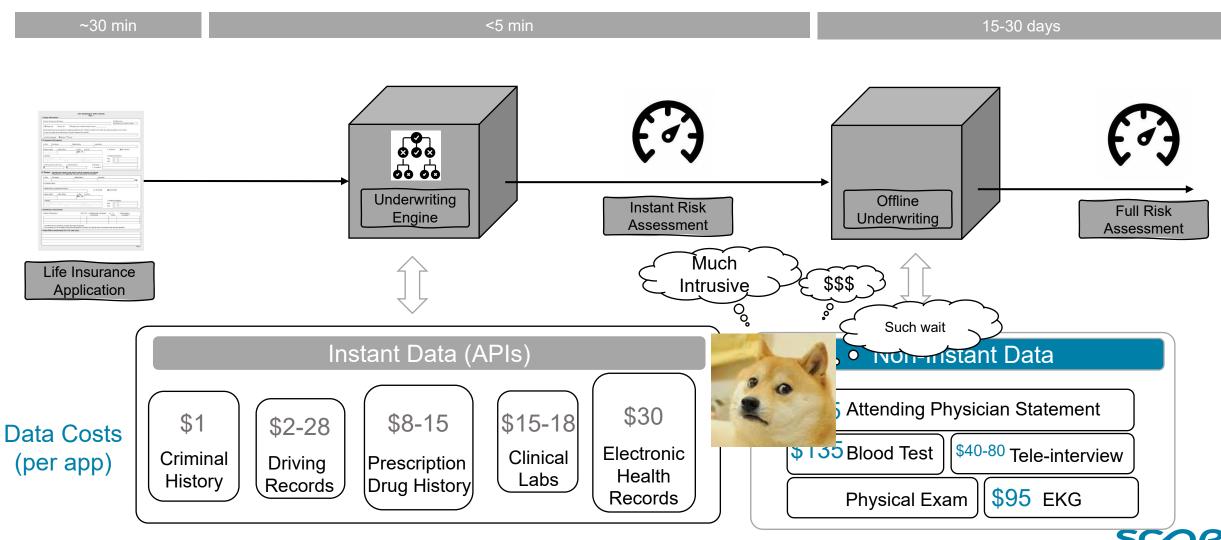




The Art & Science of

Accelerated Underwriting and Underwriting with Partial

12 | Information

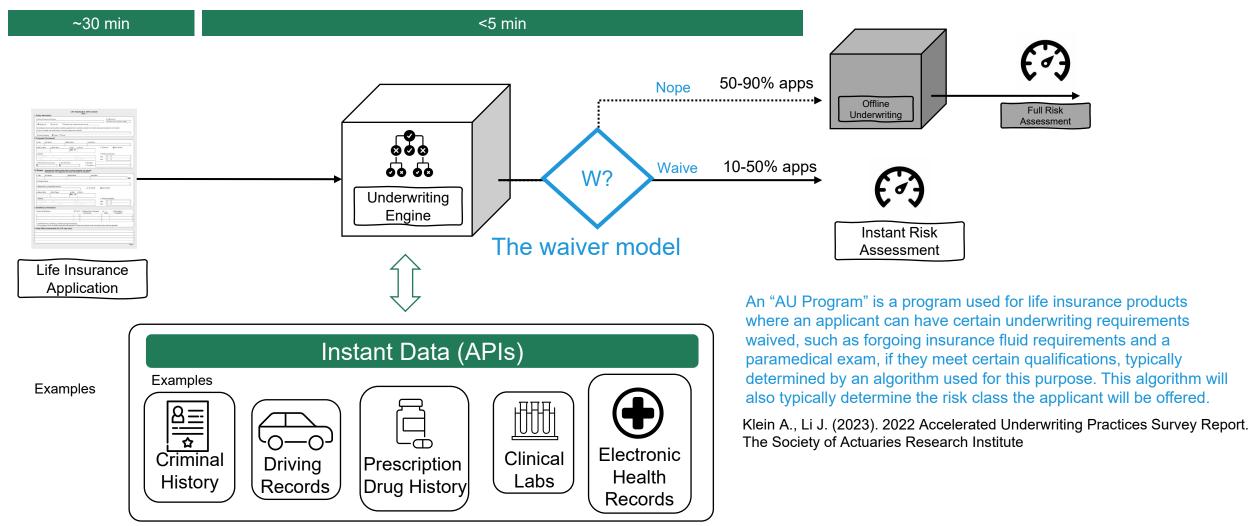


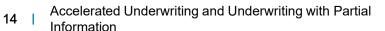
The Art & Science of

Accelerated Underwriting and Underwriting with Partial

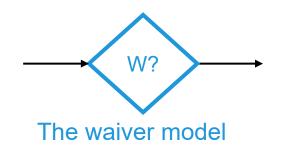
13 | Information

Accelerated Underwriting (AU)

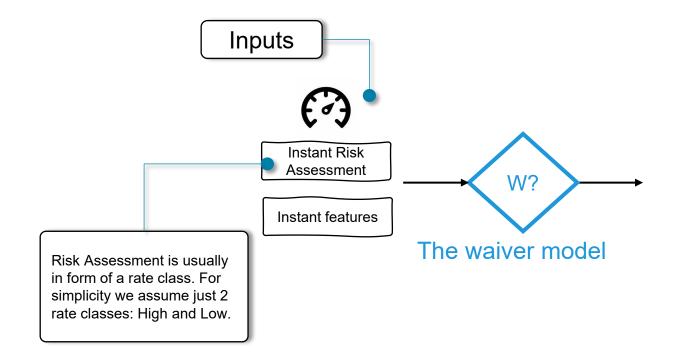




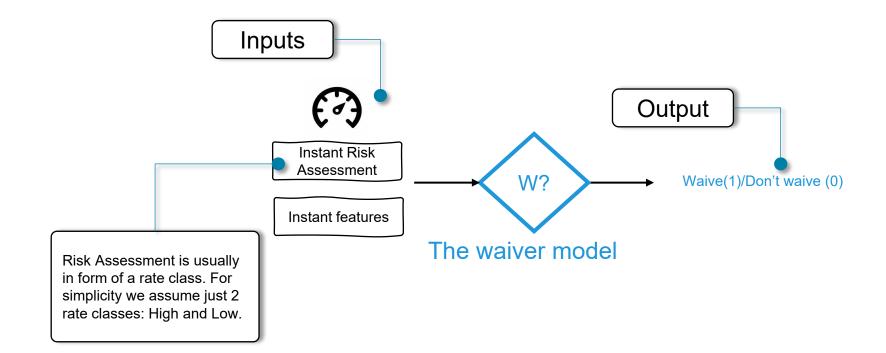
Zoom on the waiver model

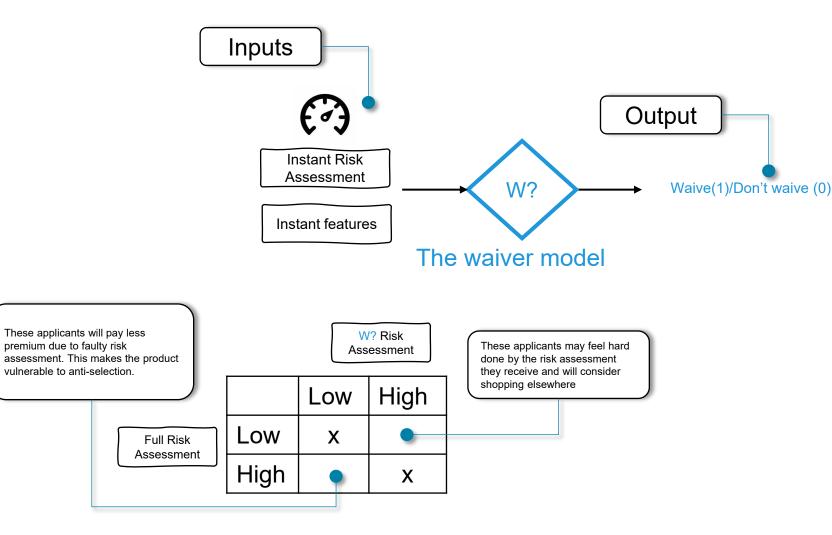


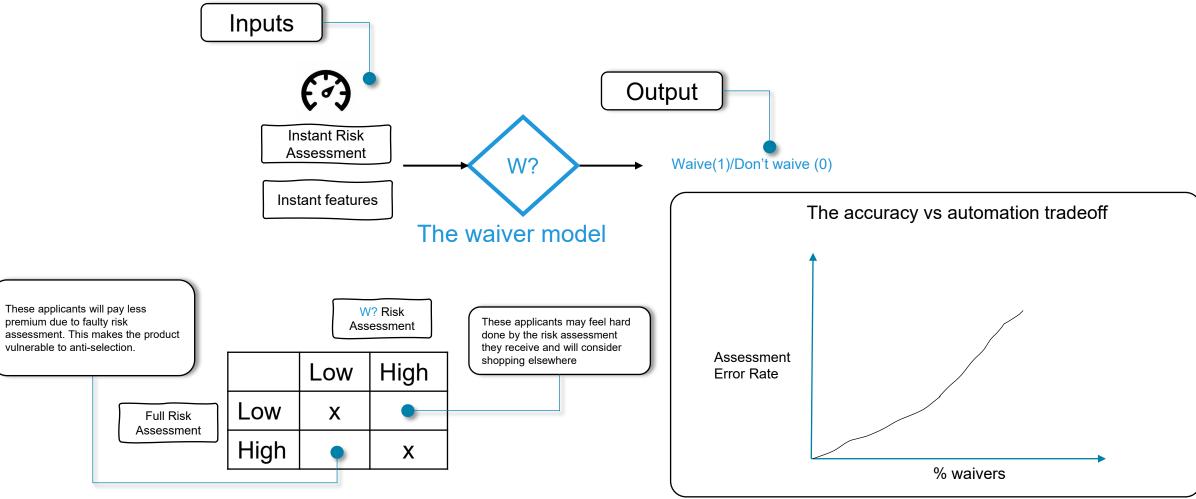
Zoom on the waiver model

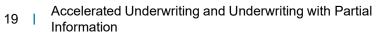


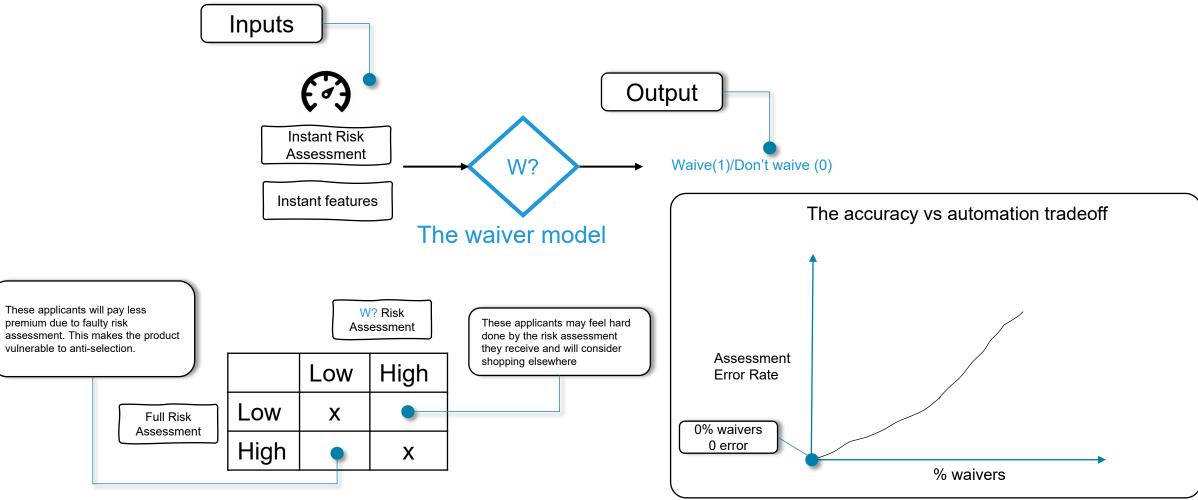
Zoom on the waiver model

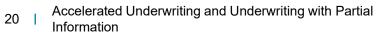




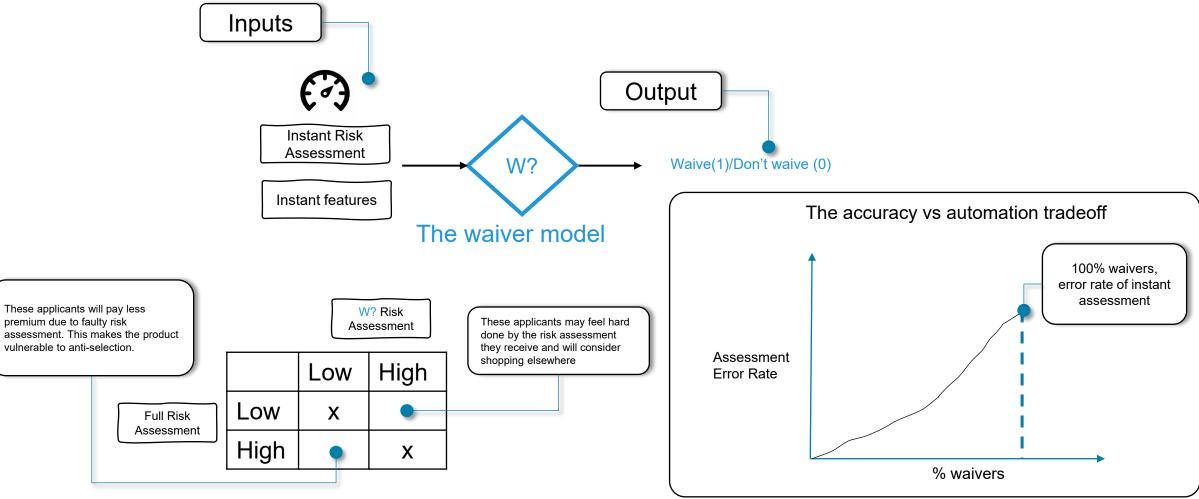


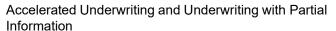






SCOR The Art & Science of Risk





SCOR The Art & Science of Risk

21

Training

Multi duration (>10) historical deaths data

id	age	sex	smoker	bmi	systolicbp	hba1c	triglycerides	 exposure (years)	event
jhg76	47	М	NS	29				 9.45	1
aks87	33	F	SM	24				 12.1	0
L									

100k-1M lives

Instant data features

Blood, Urine, Physical Exam features

Right Censored Survival Labels

How to build a waiver model for new AU programs or for replacing existing rules-based AU programs?

Training

Multi duration (>10) historical deaths data

id hba1c triglycerides bmi systolicbp exposure (years) smoker event age sex jhg76 47 NS 29 9.45 Μ 1 aks87 33 F SM 24 12.1 0 **Right Censored** Instant data features Blood, Urine, Physical Exam features Survival Labels Instantly data features (Optional)

100k-1M lives

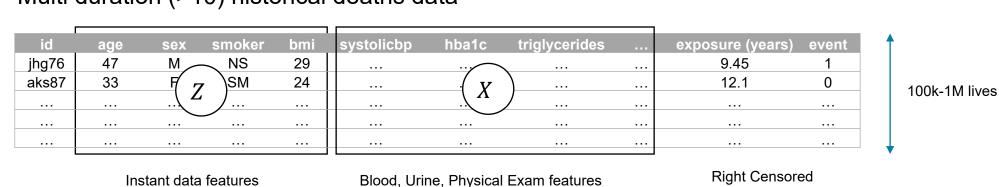
Production

			disclosed, neered differ	rently)	Instant Ri					
id	age	sex	smoker	bmi	Instant Risk Class	systolicbp	hba1c	triglycerides		↑
dff45	21	F	NS	27						
nhy90	37	F	NS	24						0-10k samples
										_
										_
L										. 🔸

Problem Setup (simulation)

Multi duration (>10) historical deaths data

Training



Instant id bmi isk Clas systolicbp triglycerides smoker hba1c age sex dff45 21 F NS 27 Production nhy90 37 F ١S 24 0-10k samples 71 X L (Optional) (Optional) (Optional) Instant data features Instant Risk Blood, Urine, Physical Exam features (possibly self-disclosed) Assessment

Survival Labels

25 | Accelerated Underwriting and Underwriting with Partial Information

Training

Multi duration (>10) historical deaths data

smoker

jhg76	47	М	NS	29	 		 9.45	1
aks87	33	F	SM	24	 		 12.1	0
					 •••	•••	 	•••

hba1c

trialvcerides

systolicbp

100k-1M lives

Instantly data features (possibly self-disclosed)

sex

ade

Blood, Urine, Physical Exam features

Right Censored Survival Labels

exposure (years)

event

• How to build a waiver model for new AU programs?

bmi

• How to build a waiver model for replacing existing rules-based AU programs?

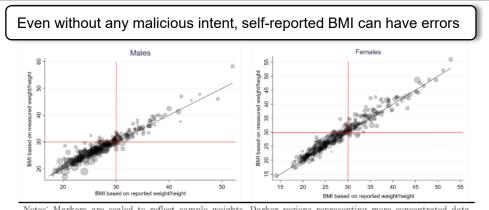
Issues:

- Production Limited data availability (<10k), with no mortality feedback
 - No natural labels to train the waiver model (can't use historical underwriting outcomes as labels, since we don't want to regress to historical rules-based underwriting)
 - Differences in instant features Z available at training time and Z' available in real world

Challenges and methods

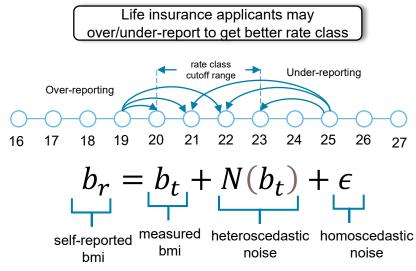
Real world Z'

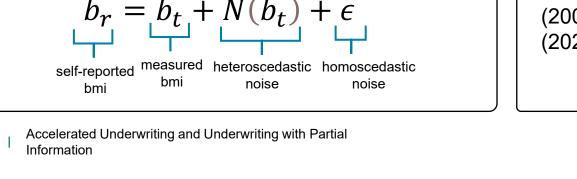
28

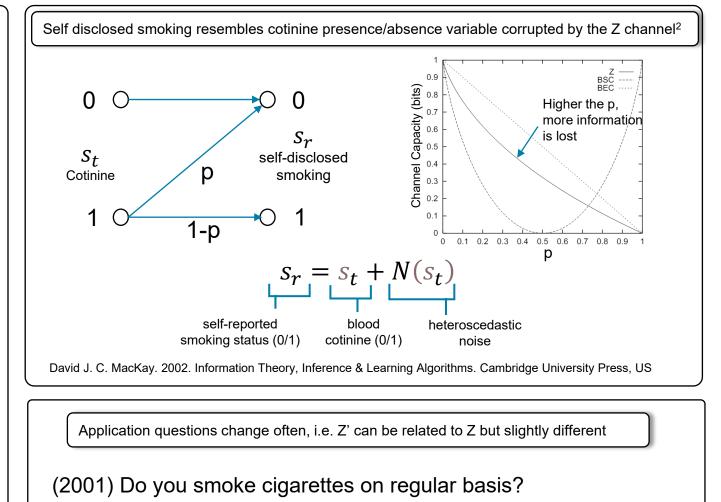


Notes: Markers are scaled to reflect sample weights. Darker regions representing more concentrated data points. The black line is a 45 degree line.

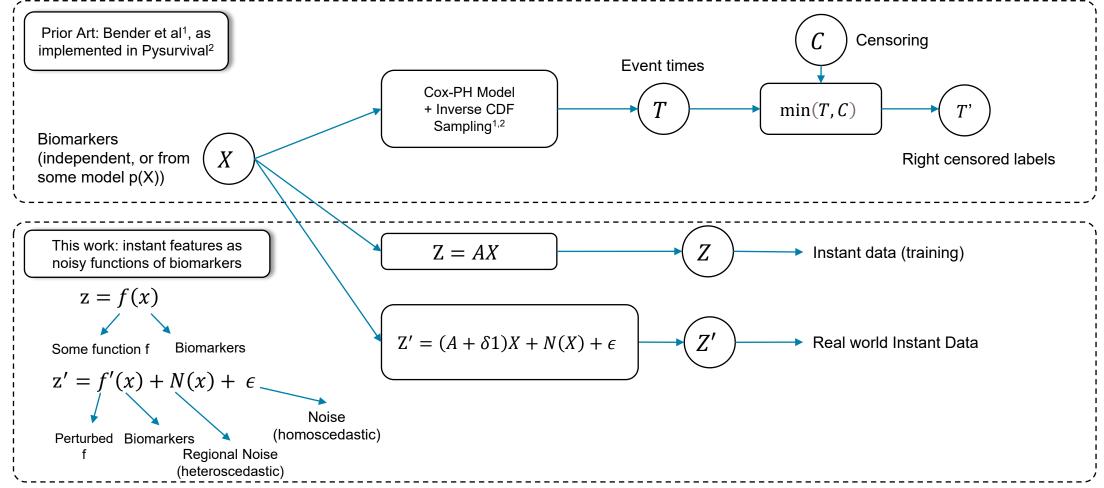
Apostolos Davillas, Andrew M. Jones, The implications of self-reported body weight and height for measurement error in BMI, Economics Letters, Volume 209, 2021, 110101, ISSN 0165-1765







(2001) Do you smoke cigarettes on regular basis? (2024) Do you smoke cigarettes, vape or any other tobacco product on regular basis?

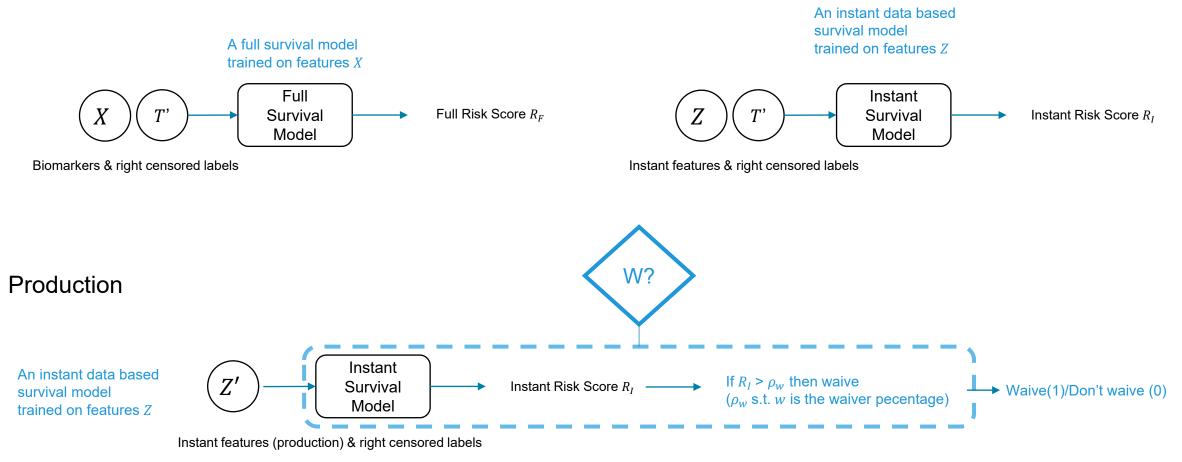


Simulation Setup: instant features as noisy functions of biomarkers

¹Bender, R., Augustin, T., & Blettner, M. (2005). Generating survival times to simulate Cox proportional hazards models. Statistics in medicine, 24(11), 1713-1723. ²Fotso et al, PySurvival: Open source package for Survival Analysis modeling, 2019--, <u>https://www.pysurvival.io/</u>, https://github.com/square/pysurvival

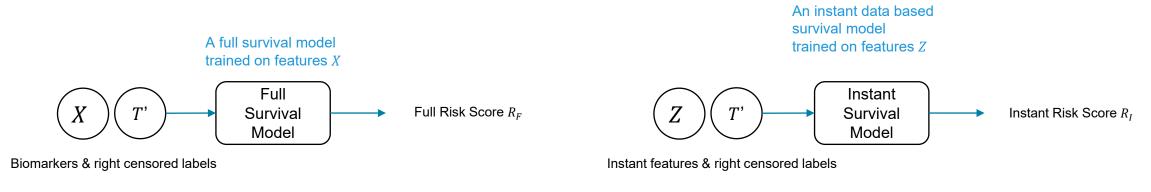
Method 1: instant survival model based

Training

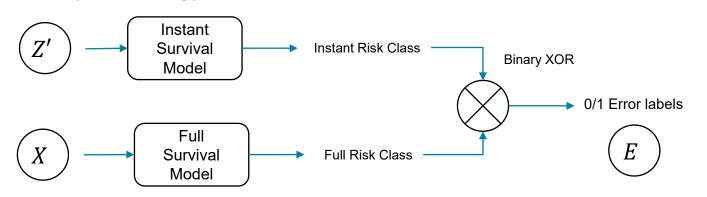


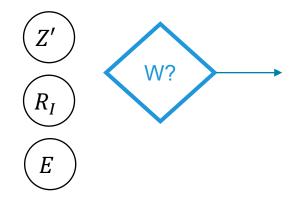
Training

31



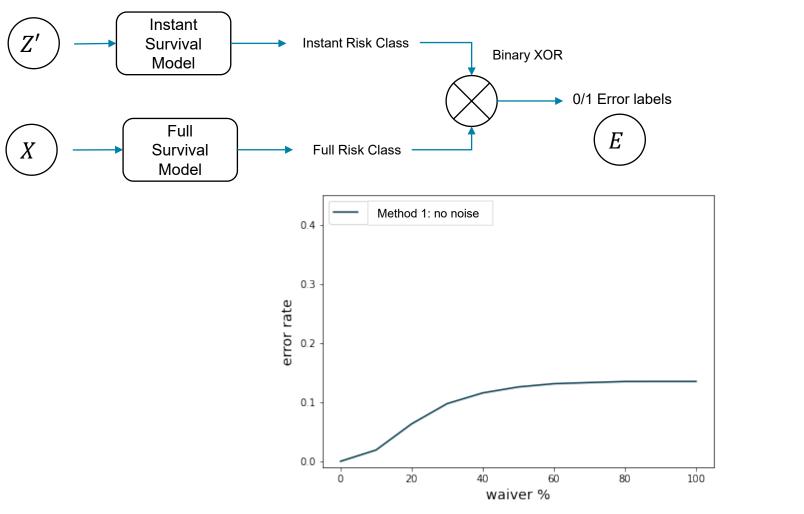
Production (fine-tuning)

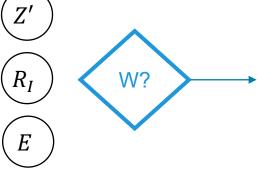




Accelerated Underwriting and Underwriting with Partial Information

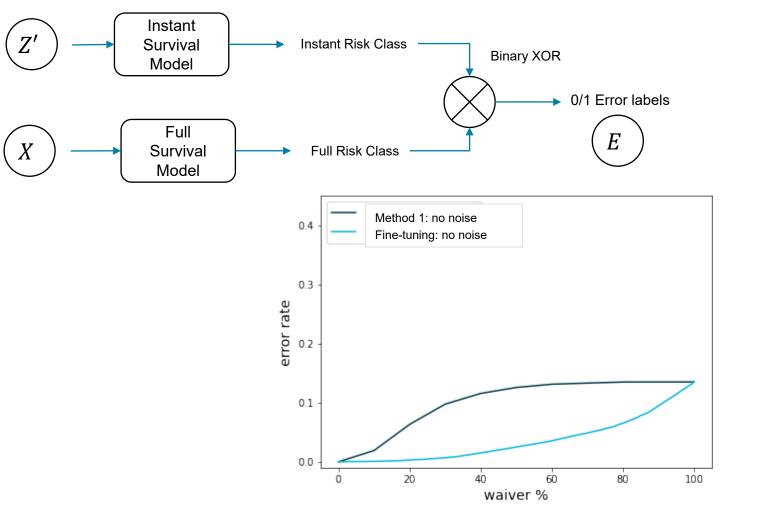
Production (Fine-tuning)

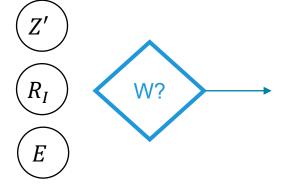




32 Accelerated Underwriting and Underwriting with Partial Information

Production (Fine-tuning)

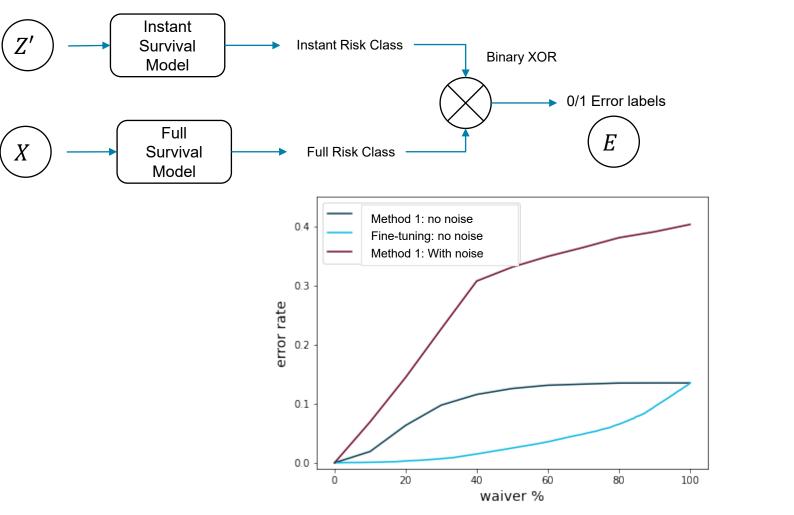




Accelerated Underwriting and Underwriting with Partial Information

33

Production (Fine-tuning)



The Art & Science of

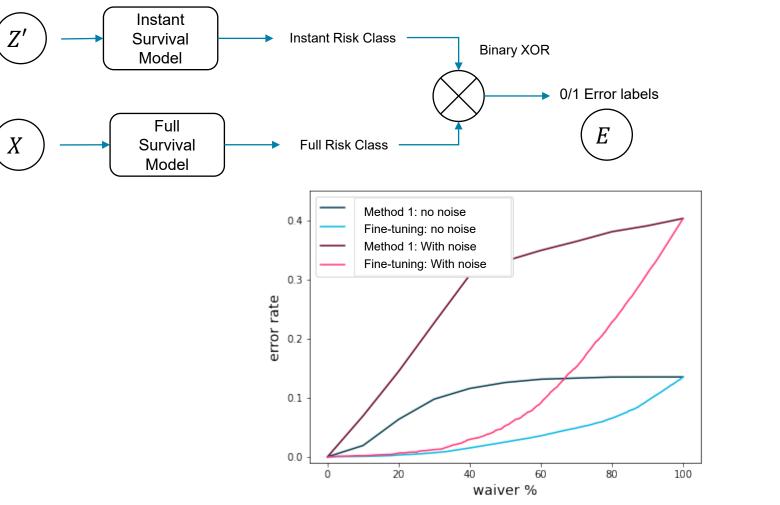
Z'

 R_I

Ε

W?

Production (Fine-tuning)



35

Z'

 R_I

E

W?

What we addressed in this talk

- Intro to Algorithmic Underwriting and Accelerated Underwriting in US life market
- Intro to evidence waiver models from historical claims data
- Real world challenges with data
- Fine-tuning on a small sample of real-world data

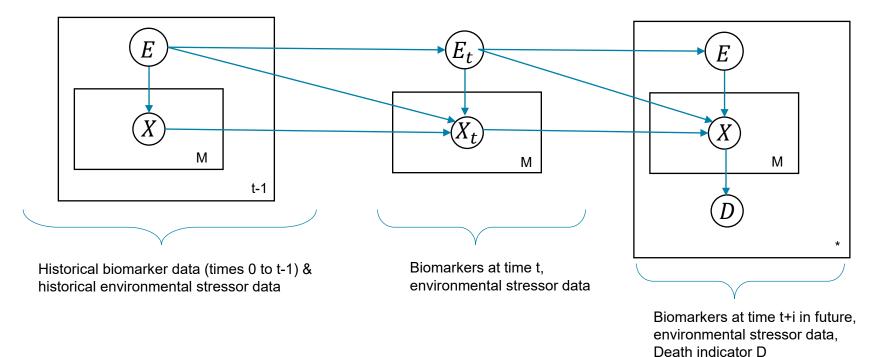
Not addressed in this talk but important

- Relationship to other concepts:
 - Knowledge Distillation
 - Learning using Privileged Information (LUPI)
 - Boosting
- Experiments with NHANES
 - Real world P(X)
 - Real world noise models for various features

Thank You

Appendix

Stochastic Process Model of Mortality



• Biomarkers

- portmanteau of "biological marker", refers to a broad subcategory of medical signs that is, objective indications of medical state observed from outside the patient –
 which can be measured accurately and reproducibly
- WHO: any substance, structure, or process that can be measured in the body or its products and influence or predict the incidence of outcome or disease
- NIH: a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention
- Propopsed by Yashin et al, this is a very general model to keep in mind, as this is relevant to whether generalized distillation will help or not
- The model can be thought of as a "random walk with manholes" in the space of biomarkers and environmental stressors
- Some states labeled "manholes" (D=1)

Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010 Nov;5(6):463-6.

Yashin, A.I. *et al.* (2016). Stochastic Process Models of Mortality and Aging. In: Biodemography of Aging. The Springer Series on Demographic Methods and Population Analysis, vol 40. Springer, Dordrecht.

Accelerated Underwriting and Underwriting with Partial

Generating right censored survival data

Formula recap

- Hazard is instantaneous danger

$$\lambda(t) = \lim_{dt \to 0} \frac{P(t \le T \le t + dt \mid T \ge t)}{dt} = \frac{f(t)}{S(t)} = -\frac{d}{dt} \ln[S(t)]$$

- Cumulative Hazard: $M(t) = \int_0^t \lambda(u) \, du$
- PDF: distribution of the times of death: $f(t) = \lambda(t)S(t)$
- Survival function: $S(t) = 1 F(t) = \int_t^{\omega} f(u) du = e^{-M(t)}$
- Cox proportional hazards model (linear): $\lambda(t|x) = \lambda_0(t)e^{\beta x}$

Case I: Constant baseline hazard function

$$\lambda(t|x) = \lambda_0 e^{\beta x} \rightarrow M(t) = \int_0^t \lambda_0 e^{\beta x} dt = \lambda_0 e^{\beta x} t \rightarrow S(t|x) = e^{-\lambda_0 e^{\beta x} t} = e^{-\beta'(x)t} \rightarrow f(t|x) = \beta'(x) e^{-\beta'(x)t}$$

i.e. the survival times f(t|x) are exponentially distributed, where the rate of the exponential distribution is dependent on covariates

Case II: Weibull: Baseline hazard is a function of time specified as follows:

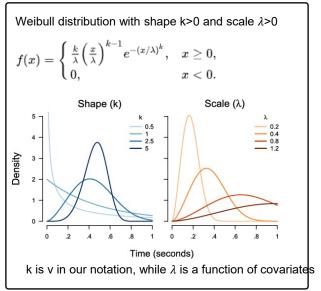
 $\lambda(t|x) = \lambda_0 v t^{v-1} e^{\beta x} \rightarrow M(t|x) = \int_0^t \lambda_0 v t^{v-1} e^{\beta x} dt = \lambda_0 t^v e^{\beta x} \rightarrow S(t|x) = e^{-\lambda_0 t^v e^{\beta x}} = e^{-\beta'(x)t^v} \rightarrow f(t|x) = v t^{v-1} \beta'(x) e^{-\beta'(x)t^v}$ i.e. the covariates inform the scale parameter of a Weibull distribution (~intensity of the mode) while v is the shape parameter of the distribution (~location of the mode)

Case III: Gompertz: Baseline hazard is exponential in time t

$$\begin{split} \lambda(t|x) &= \lambda_0 e^{\alpha t} e^{\beta x} \to M(t|x) = \int_0^t \lambda_0 e^{\alpha t} e^{\beta x} dt = \frac{\lambda_0 e^{\alpha t} e^{\beta x} - \lambda_0 e^{\beta x}}{\alpha} \to S(t|x) = e^{-(\frac{\lambda_0 e^{\alpha t} e^{\beta x} - \lambda_0 e^{\beta x}}{\alpha})} = e^{-\frac{\beta'(x)(e^{\alpha t} - 1)}{\alpha}} \\ \to f(t|x) &= \beta'(x) e^{\alpha t} e^{-\frac{\beta'(x)(e^{\alpha t} - 1)}{\alpha}} = \beta'(x) e^{(\beta'(x) + \alpha)e^{\alpha t} + \beta'(x)} \end{split}$$

CaseIV: Other distributions (see Bender et al.)

Bender, R., Augustin, T., & Blettner, M. (2005). Generating survival times to simulate Cox proportional hazards models. Statistics in medicine, 24(11), 1713-1723. Accelerated Underwriting and Underwriting with Partial Information



Generating right censored survival data

Cox proportional hazards model (linear):

- Formula: $\lambda(t|x) = \lambda_0(t) e^{\beta x}$
- Survival function: $S(t) = e^{-\int_0^t \lambda(u|x) \, du} = e^{-\int_0^t \lambda_0(u) e^{\beta x} \, du} = e^{-e^{\beta x} \int_0^t \lambda_0(u) \, du} = e^{-e^{\beta x} M_0(t)}$
- CDF: $F(t|x) = 1 e^{-e^{\beta x} M_0(t)}$
- Data generation strategy is as follows:
 - 1. Generate covariates x
 - a) Independently with univariate distributions of choice
 - b) From some joint distribution p(x) (perhaps learnt using unsupervised learning)
 - 2. Assume a baseline hazard $\lambda_0(t)$ and derive F(t|x)
 - 3. Use inverse transform sampling
 - The cdf *F* transforms some domain into [0,1] interval i.e. $F: [a, b] \rightarrow [0,1]$ for some a,b
 - If F is invertible, we can generate a random variable with cdf F as $F^{-1}(U)$ where U is uniform RV over [0,1]
 - Bender et al¹ simplify this to

$$T = M_0^{-1}[-\log(U) \times e^{-\beta x}]$$

- 4. Censoring time C is generated independently from $\mathcal{N}(c, 5)$, event of interest happens if T<C else it is censored
- Pysurvival² implements the above process for case I-III of baseline hazard and independent covariates

¹Bender, R., Augustin, T., & Blettner, M. (2005). Generating survival times to simulate Cox proportional hazards models. Statistics in medicine, 24(11), 1713-1723. ²Fotso et al, PySurvival: Open source package for Survival Analysis modeling, 2019--, <u>https://www.pysurvival.io/</u>, https://github.com/square/pysurvival/issues/15#issuecomment-579584083

41

Refresher on boosting

