Computing Capital Requirements with Guarantees

Patrick Cheridito and Moritz Weiss
RiskLab, ETH Zurich
Insurance Data Science Conference, Stockholm

June 18, 2024

Asset-Liability Risk

$0=$ current time $\quad \tau=$ risk horizon (e.g. 1 year)

Asset-Liability Risk

$$
0=\text { current time } \quad \tau=\text { risk horizon (e.g. } 1 \text { year })
$$

- All relevant information at time τ is given by a random vector $X=\left(X_{1}, \ldots, X_{d}\right)$

Asset-Liability Risk

$$
0=\text { current time } \quad \tau=\text { risk horizon (e.g. } 1 \text { year })
$$

- All relevant information at time τ is given by a random vector $X=\left(X_{1}, \ldots, X_{d}\right)$
- Portfolio value at time τ :

$$
V=v(X)+\mathbb{E}^{\mathbb{Q}}\left[\left.\sum_{i=1}^{I} \frac{N_{\tau}}{N_{t_{i}}} C_{t_{i}} \right\rvert\, X\right]
$$

Asset-Liability Risk

$$
0=\text { current time } \quad \tau=\text { risk horizon (e.g. } 1 \text { year })
$$

- All relevant information at time τ is given by a random vector $X=\left(X_{1}, \ldots, X_{d}\right)$
- Portfolio value at time τ :

$$
V=v(X)+\mathbb{E}^{\mathbb{Q}}\left[\left.\sum_{i=1}^{I} \frac{N_{\tau}}{N_{t_{i}}} C_{t_{i}} \right\rvert\, X\right] \text {, where }
$$

$v: \mathbb{R}^{d} \rightarrow \mathbb{R}, \mathbb{Q}$ is a pricing measure, $0<\tau<t_{1}<\ldots<t_{I}, \quad C_{t_{i}}$ are future cash flows, $N_{t_{i}}$ is a numeraire process

Asset-Liability Risk

$$
0=\text { current time } \quad \tau=\text { risk horizon (e.g. } 1 \text { year })
$$

- All relevant information at time τ is given by a random vector $X=\left(X_{1}, \ldots, X_{d}\right)$
- Portfolio value at time τ :

$$
V=v(X)+\mathbb{E}^{\mathbb{Q}}\left[\left.\sum_{i=1}^{I} \frac{N_{\tau}}{N_{t_{i}}} C_{t_{i}} \right\rvert\, X\right], \text { where }
$$

$v: \mathbb{R}^{d} \rightarrow \mathbb{R}, \mathbb{Q}$ is a pricing measure, $0<\tau<t_{1}<\ldots<t_{I}, \quad C_{t_{i}}$ are future cash flows, $N_{t_{i}}$ is a numeraire process

- Loss at time $\tau: \quad L=-V=\mathbb{E}^{\mathbb{Q}}[Y \mid X]$

Asset-Liability Risk

$$
0=\text { current time } \quad \tau=\text { risk horizon (e.g. } 1 \text { year) }
$$

- All relevant information at time τ is given by a random vector $X=\left(X_{1}, \ldots, X_{d}\right)$
- Portfolio value at time τ :

$$
V=v(X)+\mathbb{E}^{\mathbb{Q}}\left[\left.\sum_{i=1}^{I} \frac{N_{\tau}}{N_{t_{i}}} C_{t_{i}} \right\rvert\, X\right], \text { where }
$$

$v: \mathbb{R}^{d} \rightarrow \mathbb{R}, \mathbb{Q}$ is a pricing measure, $0<\tau<t_{1}<\ldots<t_{I}, \quad C_{t_{i}}$ are future cash flows, $N_{t_{i}}$ is a numeraire process

- Loss at time $\tau: \quad L=-V=\mathbb{E}^{\mathbb{Q}}[Y \mid X]$, where $\quad Y=-v(X)-\sum_{i=1}^{I} \frac{N_{\tau}}{N_{t_{i}}} C_{t_{i}}$

Asset-Liability Risk

$$
0=\text { current time } \quad \tau=\text { risk horizon (e.g. } 1 \text { year) }
$$

- All relevant information at time τ is given by a random vector $X=\left(X_{1}, \ldots, X_{d}\right)$
- Portfolio value at time τ :

$$
V=v(X)+\mathbb{E}^{\mathbb{Q}}\left[\left.\sum_{i=1}^{I} \frac{N_{\tau}}{N_{t_{i}}} C_{t_{i}} \right\rvert\, X\right] \text {, where }
$$

$v: \mathbb{R}^{d} \rightarrow \mathbb{R}, \mathbb{Q}$ is a pricing measure, $0<\tau<t_{1}<\ldots<t_{I}, \quad C_{t_{i}}$ are future cash flows, $N_{t_{i}}$ is a numeraire process

- Loss at time $\tau: \quad L=-V=\mathbb{E}^{\mathbb{Q}}[Y \mid X]$, where $\quad Y=-v(X)-\sum_{i=1}^{I} \frac{N_{\tau}}{N_{t_{i}}} C_{t_{i}}$
- We are interested in Value-at-Risk (for $\alpha=99.5 \%$) and Expected Shortfall (for $\alpha=99 \%$)

Asset-Liability Risk

$$
0=\text { current time } \quad \tau=\text { risk horizon (e.g. } 1 \text { year) }
$$

- All relevant information at time τ is given by a random vector $X=\left(X_{1}, \ldots, X_{d}\right)$
- Portfolio value at time τ :

$$
V=v(X)+\mathbb{E}^{\mathbb{Q}}\left[\left.\sum_{i=1}^{I} \frac{N_{\tau}}{N_{t_{i}}} C_{t_{i}} \right\rvert\, X\right] \text {, where }
$$

$v: \mathbb{R}^{d} \rightarrow \mathbb{R}, \mathbb{Q}$ is a pricing measure, $0<\tau<t_{1}<\ldots<t_{I}, \quad C_{t_{i}}$ are future cash flows, $N_{t_{i}}$ is a numeraire process

- Loss at time $\tau: \quad L=-V=\mathbb{E}^{\mathbb{Q}}[Y \mid X]$, where $\quad Y=-v(X)-\sum_{i=1}^{I} \frac{N_{\tau}}{N_{t_{i}}} C_{t_{i}}$
- We are interested in Value-at-Risk (for $\alpha=99.5 \%$) and Expected Shortfall (for $\alpha=99 \%$)

$$
\operatorname{VaR}_{\alpha}(L):=\min \{x \in \mathbb{R}: \mathbb{P}[L \leq x] \geq \alpha\} \text { and } \mathrm{ES}_{\alpha}(L):=\frac{1}{1-\alpha} \int_{\alpha}^{1} \operatorname{VaR}_{u}(L) d u
$$

Asset-Liability Risk

$$
0=\text { current time } \quad \tau=\text { risk horizon (e.g. } 1 \text { year) }
$$

- All relevant information at time τ is given by a random vector $X=\left(X_{1}, \ldots, X_{d}\right)$
- Portfolio value at time τ :

$$
V=v(X)+\mathbb{E}^{\mathbb{Q}}\left[\left.\sum_{i=1}^{I} \frac{N_{\tau}}{N_{t_{i}}} C_{t_{i}} \right\rvert\, X\right] \text {, where }
$$

$v: \mathbb{R}^{d} \rightarrow \mathbb{R}, \mathbb{Q}$ is a pricing measure, $0<\tau<t_{1}<\ldots<t_{I}, \quad C_{t_{i}}$ are future cash flows, $N_{t_{i}}$ is a numeraire process

- Loss at time $\tau: \quad L=-V=\mathbb{E}^{\mathbb{Q}}[Y \mid X]$, where $\quad Y=-v(X)-\sum_{i=1}^{I} \frac{N_{\tau}}{N_{t_{i}}} C_{t_{i}}$
- We are interested in Value-at-Risk (for $\alpha=99.5 \%$) and Expected Shortfall (for $\alpha=99 \%$)

$$
\operatorname{VaR}_{\alpha}(L):=\min \{x \in \mathbb{R}: \mathbb{P}[L \leq x] \geq \alpha\} \text { and } \operatorname{ES}_{\alpha}(L):=\frac{1}{1-\alpha} \int_{\alpha}^{1} \operatorname{VaR}_{u}(L) d u \approx \mathbb{E}\left[L \mid L \geq \operatorname{VaR}_{\alpha}(L)\right]
$$

Pasting together the real world measure \mathbb{P} and the pricing measure \mathbb{Q}

Pasting together the real world measure \mathbb{P} and the pricing measure \mathbb{Q}

where π is the distribution of $X=\left(X_{1}, \ldots, X_{d}\right)$

Conditional Expectations as Minimizing Functions

- $L=\mathbb{E}^{\mathbb{P} \otimes \mathbb{Q}}[Y \mid X]$ is the L^{2}-projection of Y on $L^{2}\left(\mathcal{F}^{X}\right)$

Conditional Expectations as Minimizing Functions

- $L=\mathbb{E}^{\mathbb{P} \otimes \mathbb{Q}}[Y \mid X]$ is the L^{2}-projection of Y on $L^{2}\left(\mathcal{F}^{X}\right)$

$$
\mathbb{E}^{\mathbb{P} \otimes \mathbb{Q}}\left[(Y-L)^{2}\right]=\min _{f: \mathbb{R}^{d} \rightarrow \mathbb{R}} \mathbb{E}^{\mathbb{P} \otimes \mathbb{Q}}\left[(Y-f(X))^{2}\right]
$$

Conditional Expectations as Minimizing Functions

- $L=\mathbb{E}^{\mathbb{P} \otimes \mathbb{Q}}[Y \mid X]$ is the L^{2}-projection of Y on $L^{2}\left(\mathcal{F}^{X}\right)$

$$
\mathbb{E}^{\mathbb{P} \otimes \mathbb{Q}}\left[(Y-L)^{2}\right]=\min _{f: \mathbb{R}^{d} \rightarrow \mathbb{R}} \mathbb{E}^{\mathbb{P} \otimes \mathbb{Q}}\left[(Y-f(X))^{2}\right]
$$

- Least Squares Monte Carlo

$$
\text { simulate }\left(X^{j}, Y^{j}\right) \text { and solve } \min _{f \in \mathcal{S}} \frac{1}{J} \sum_{j=1}^{J}\left(Y^{j}-f\left(X^{j}\right)\right)^{2}
$$

over a subfamily \mathcal{S} of all Borel functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

Least Squares Regression

- linear regression on polynomials Longstaff and Schwartz (2001), Ha and Bauer (2021)

Least Squares Regression

- linear regression on polynomials Longstaff and Schwartz (2001), Ha and Bauer (2021)
- regression trees Boudabsa and Filipović (2022)

Least Squares Regression

- linear regression on polynomials Longstaff and Schwartz (2001), Ha and Bauer (2021)
- regression trees Boudabsa and Filipović (2022)
- neural network regression Kohlen et al (2010), Fiore et al. (2018), Cheridito et al. (2020)

Here, we minimize

$$
\theta \mapsto \frac{1}{J} \sum_{j=1}^{J}\left(Y^{j}-f_{\theta}\left(X^{j}\right)\right)^{2}
$$

over a set of neural networks $f_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad \theta \in \mathbb{R}^{q}$

Monte Carlo Estimation of VaR and ES

- Let X^{1}, \ldots, X^{n} be independent \mathbb{P}-simulations of $X=\left(X_{1}, \ldots, X_{d}\right)$

Monte Carlo Estimation of VaR and ES

- Let X^{1}, \ldots, X^{n} be independent \mathbb{P}-simulations of $X=\left(X_{1}, \ldots, X_{d}\right)$
- Denote by $X^{(1)}, \ldots, X^{(n)}$ the reordered sample so that

$$
L^{(1)}=f_{\theta}\left(X^{(1)}\right) \geq \ldots \geq L^{(n)}=f_{\theta}\left(X^{(n)}\right)
$$

Monte Carlo Estimation of VaR and ES

- Let X^{1}, \ldots, X^{n} be independent \mathbb{P}-simulations of $X=\left(X_{1}, \ldots, X_{d}\right)$
- Denote by $X^{(1)}, \ldots, X^{(n)}$ the reordered sample so that

$$
L^{(1)}=f_{\theta}\left(X^{(1)}\right) \geq \ldots \geq L^{(n)}=f_{\theta}\left(X^{(n)}\right)
$$

- Apply $V a R_{\alpha}$ and $E S_{\alpha}$ to the empirical measure

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{L^{(i)}}
$$

Monte Carlo Estimation of VaR and ES

- Let X^{1}, \ldots, X^{n} be independent \mathbb{P}-simulations of $X=\left(X_{1}, \ldots, X_{d}\right)$
- Denote by $X^{(1)}, \ldots, X^{(n)}$ the reordered sample so that

$$
L^{(1)}=f_{\theta}\left(X^{(1)}\right) \geq \ldots \geq L^{(n)}=f_{\theta}\left(X^{(n)}\right)
$$

- Apply $V a R_{\alpha}$ and $E S_{\alpha}$ to the empirical measure

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{L^{(i)}}
$$

$$
\leadsto \quad \widehat{\operatorname{VaR}}_{\alpha}(n)=L^{(j)} \quad \text { and } \quad \widehat{\mathrm{ES}}_{\alpha}(n)=\frac{1}{1-\alpha} \sum_{i=1}^{j-1} \frac{L^{(i)}}{n}+\left(1-\frac{j-1}{(1-\alpha) n}\right) L^{(j)}
$$

where

$$
j=\min \{i \in\{1, \ldots, n\}: i / n>1-\alpha\}
$$

Monte Carlo Estimation of VaR and ES

- Let X^{1}, \ldots, X^{n} be independent \mathbb{P}-simulations of $X=\left(X_{1}, \ldots, X_{d}\right)$
- Denote by $X^{(1)}, \ldots, X^{(n)}$ the reordered sample so that

$$
L^{(1)}=f_{\theta}\left(X^{(1)}\right) \geq \ldots \geq L^{(n)}=f_{\theta}\left(X^{(n)}\right)
$$

- Apply $V a R_{\alpha}$ and $E S_{\alpha}$ to the empirical measure

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{L^{(i)}}
$$

$$
\leadsto \quad \widehat{\operatorname{VaR}}_{\alpha}(n)=L^{(j)} \quad \text { and } \quad \widehat{\mathrm{ES}}_{\alpha}(n)=\frac{1}{1-\alpha} \sum_{i=1}^{j-1} \frac{L^{(i)}}{n}+\left(1-\frac{j-1}{(1-\alpha) n}\right) L^{(j)}
$$

where

$$
j=\min \{i \in\{1, \ldots, n\}: i / n>1-\alpha\}
$$

there exist convergence rates
see. e.g., David and Nagaraja (2003) and Zwingmann and Holzmann (2016)

Importance Sampling

- Sample more frequently from the tail of L when estimating VaR_{α} and ES_{α}

Importance Sampling

- Sample more frequently from the tail of L when estimating $\operatorname{VaR}_{\alpha}$ and ES_{α}
- by shifting the original distribution of $X=\left(X_{1}, \ldots, X_{d}\right)$ to ν

Importance Sampling

- Sample more frequently from the tail of L when estimating $\operatorname{VaR}_{\alpha}$ and ES_{α}
- by shifting the original distribution of $X=\left(X_{1}, \ldots, X_{d}\right)$ to ν
- so that $L=f(X)$ has more weight in the tail

Importance Sampling

- Sample more frequently from the tail of L when estimating $\operatorname{VaR}_{\alpha}$ and ES_{α}
- by shifting the original distribution of $X=\left(X_{1}, \ldots, X_{d}\right)$ to ν
- so that $L=f(X)$ has more weight in the tail

Example 1: Portfolio of Call and Put Options

- stocks $\quad d S_{t}^{i}=\mu_{i} S_{t}^{i} d t+\sigma_{i} S_{t}^{i} d W_{t}^{\mathbb{P}, i}=r S_{t}^{i} d t+\sigma_{i} S_{t}^{i} d W_{t}^{\mathbb{Q}, i}, \quad i=1, \ldots, 20$,

Example 1: Portfolio of Call and Put Options

- stocks $\quad d S_{t}^{i}=\mu_{i} S_{t}^{i} d t+\sigma_{i} S_{t}^{i} d W_{t}^{\mathbb{P}, i}=r S_{t}^{i} d t+\sigma_{i} S_{t}^{i} d W_{t}^{\mathbb{Q}, i}, \quad i=1, \ldots, 20$,
- call options $\left(S_{T}^{i}-K\right)^{+}, \quad i=1, \ldots 10$,

Example 1: Portfolio of Call and Put Options

- stocks $\quad d S_{t}^{i}=\mu_{i} S_{t}^{i} d t+\sigma_{i} S_{t}^{i} d W_{t}^{\mathbb{P}, i}=r S_{t}^{i} d t+\sigma_{i} S_{t}^{i} d W_{t}^{\mathbb{Q}, i}, \quad i=1, \ldots, 20$,
- call options $\left(S_{T}^{i}-K\right)^{+}, \quad i=1, \ldots 10, \quad$ put options $\left(K-S_{T}^{i}\right)^{+}, \quad i=11, \ldots 20$,

Example 1: Portfolio of Call and Put Options

- stocks $\quad d S_{t}^{i}=\mu_{i} S_{t}^{i} d t+\sigma_{i} S_{t}^{i} d W_{t}^{\mathbb{P}, i}=r S_{t}^{i} d t+\sigma_{i} S_{t}^{i} d W_{t}^{\mathbb{Q}, i}, \quad i=1, \ldots, 20$,
- call options $\left(S_{T}^{i}-K\right)^{+}, \quad i=1, \ldots 10, \quad$ put options $\left(K-S_{T}^{i}\right)^{+}, \quad i=11, \ldots 20$,
- time- τ loss $L=e^{-r(T-\tau)} \mathbb{E}^{\mathbb{Q}}\left[\sum_{i=1}^{10}\left(S_{T}^{i}-K\right)^{+}+\sum_{i=11}^{20}\left(K-S_{T}^{i}\right)^{+} \mid S_{\tau}^{1}, \ldots, S_{\tau}^{20}\right]$

Example 1: Portfolio of Call and Put Options

- stocks $\quad d S_{t}^{i}=\mu_{i} S_{t}^{i} d t+\sigma_{i} S_{t}^{i} d W_{t}^{\mathbb{P}, i}=r S_{t}^{i} d t+\sigma_{i} S_{t}^{i} d W_{t}^{\mathbb{Q}, i}, \quad i=1, \ldots, 20$,
- call options $\left(S_{T}^{i}-K\right)^{+}, \quad i=1, \ldots 10, \quad$ put options $\left(K-S_{T}^{i}\right)^{+}, \quad i=11, \ldots 20$,
- time- τ loss $\quad L=e^{-r(T-\tau)} \mathbb{E}^{\mathbb{Q}}\left[\sum_{i=1}^{10}\left(S_{T}^{i}-K\right)^{+}+\sum_{i=11}^{20}\left(K-S_{T}^{i}\right)^{+} \mid S_{\tau}^{1}, \ldots, S_{\tau}^{20}\right]$

> without IS with IS
> reference values obtained from Black-Scholes

Example 1: Portfolio of Call and Put Options

- stocks $\quad d S_{t}^{i}=\mu_{i} S_{t}^{i} d t+\sigma_{i} S_{t}^{i} d W_{t}^{\mathbb{P}, i}=r S_{t}^{i} d t+\sigma_{i} S_{t}^{i} d W_{t}^{\mathbb{Q}, i}, \quad i=1, \ldots, 20$,
- call options $\left(S_{T}^{i}-K\right)^{+}, \quad i=1, \ldots 10, \quad$ put options $\left(K-S_{T}^{i}\right)^{+}, \quad i=11, \ldots 20$,
- time- τ loss $L=e^{-r(T-\tau)} \mathbb{E}^{\mathbb{Q}}\left[\sum_{i=1}^{10}\left(S_{T}^{i}-K\right)^{+}+\sum_{i=11}^{20}\left(K-S_{T}^{i}\right)^{+} \mid S_{\tau}^{1}, \ldots, S_{\tau}^{20}\right]$

Approximation Error I: $\quad L=f(X) \approx \hat{L}=f_{\theta}(X)$

Example 1: Portfolio of Call and Put Options

- stocks $\quad d S_{t}^{i}=\mu_{i} S_{t}^{i} d t+\sigma_{i} S_{t}^{i} d W_{t}^{\mathbb{P}, i}=r S_{t}^{i} d t+\sigma_{i} S_{t}^{i} d W_{t}^{\mathbb{Q}, i}, \quad i=1, \ldots, 20$,
- call options $\left(S_{T}^{i}-K\right)^{+}, \quad i=1, \ldots 10, \quad$ put options $\left(K-S_{T}^{i}\right)^{+}, \quad i=11, \ldots 20$,
- time- τ loss $L=e^{-r(T-\tau)} \mathbb{E}^{\mathbb{Q}}\left[\sum_{i=1}^{10}\left(S_{T}^{i}-K\right)^{+}+\sum_{i=11}^{20}\left(K-S_{T}^{i}\right)^{+} \mid S_{\tau}^{1}, \ldots, S_{\tau}^{20}\right]$

Approximation Error I: $\quad L=f(X) \approx \hat{L}=f_{\theta}(X)$
Approximation Error II: $\quad \mathrm{ES}_{\alpha}(\hat{L}) \approx \widehat{\mathrm{ES}}_{\alpha}(\hat{L})$

Example 2: Variable Annuity with GMIB (Guaranteed Minimum Income Benefit)

Example 2: Variable Annuity with GMIB (Guaranteed Minimum Income Benefit)

(Ha and Bauer, 2021)
value of the annuity at time $T: \max \left\{S_{T}=e^{q_{T}}, b a_{x+T}(T)\right\}$

Example 2: Variable Annuity with GMIB (Guaranteed Minimum Income Benefit)
(Ha and Bauer, 2021)
value of the annuity at time $T: \max \left\{S_{T}=e^{q T}, b a_{x+T}(T)\right\}$

$$
L=\mathbb{E}^{\mathbb{Q}}\left[e^{-\int_{\tau}^{T} r_{s}+\mu_{x+s} d s} \max \left\{e^{q_{T}}, b a_{x+T}(T)\right\} \mid q_{\tau}, r_{\tau}, \mu_{x+\tau}\right]
$$

where $a_{x+T}(T)=$ time- T value of a life-time annuity and $q_{\tau}=\log$-stock index, $r_{\tau}=$ interest rate, $\mu_{x+\tau}=$ mortality rate

Example 2: Variable Annuity with GMIB (Guaranteed Minimum Income Benefit) (Ha and Bauer, 2021)
value of the annuity at time $T: \max \left\{S_{T}=e^{q T}, b a_{x+T}(T)\right\}$

$$
L=\mathbb{E}^{\mathbb{Q}}\left[e^{-\int_{\tau}^{T} r_{s}+\mu_{x+s} d s} \max \left\{e^{q_{T}}, b a_{x+T}(T)\right\} \mid q_{\tau}, r_{\tau}, \mu_{x+\tau}\right]
$$

where $a_{x+T}(T)=$ time- T value of a life-time annuity and $q_{\tau}=$ log-stock index, $r_{\tau}=$ interest rate, $\mu_{x+\tau}=$ mortality rate

without IS

with IS

Example 2: Variable Annuity with GMIB (Guaranteed Minimum Income Benefit) (Ha and Bauer, 2021)
value of the annuity at time $T: \max \left\{S_{T}=e^{q T}, b a_{x+T}(T)\right\}$

$$
L=\mathbb{E}^{\mathbb{Q}}\left[e^{-\int_{\tau}^{T} r_{s}+\mu_{x+s} d s} \max \left\{e^{q_{T}}, b a_{x+T}(T)\right\} \mid q_{\tau}, r_{\tau}, \mu_{x+\tau}\right]
$$

where $a_{x+T}(T)=$ time- T value of a life-time annuity and $q_{\tau}=$ log-stock index, $r_{\tau}=$ interest rate, $\mu_{x+\tau}=$ mortality rate

Approximation Error I: $\quad L=f(X) \approx \hat{L}=f_{\theta}(X) \quad$ black box!

Example 2: Variable Annuity with GMIB (Guaranteed Minimum Income Benefit) (Ha and Bauer, 2021)
value of the annuity at time $T: \max \left\{S_{T}=e^{q T}, b a_{x+T}(T)\right\}$

$$
L=\mathbb{E}^{\mathbb{Q}}\left[e^{-\int_{\tau}^{T} r_{s}+\mu_{x+s} d s} \max \left\{e^{q_{T}}, b a_{x+T}(T)\right\} \mid q_{\tau}, r_{\tau}, \mu_{x+\tau}\right]
$$

where $a_{x+T}(T)=$ time- T value of a life-time annuity and $q_{\tau}=$ log-stock index, $r_{\tau}=$ interest rate, $\mu_{x+\tau}=$ mortality rate

Approximation Error I: $\quad L=f(X) \approx \hat{L}=f_{\theta}(X) \quad$ black box!
Approximation Error II: $\quad \mathrm{ES}_{\alpha}(\hat{L}) \approx \widehat{\mathrm{ES}}_{\alpha}(\hat{L}) \quad$ well understood

Computation of Conditional Expectations with Guarantees

Goal Derive an alternative representation of the minimal L^{2}-distance

Computation of Conditional Expectations with Guarantees

Goal Derive an alternative representation of the minimal L^{2}-distance

$$
\min _{f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{2}}\|Y-f(X)\|_{2}=\|Y-\mathbb{E}[Y \mid X]\|_{2}
$$

Computation of Conditional Expectations with Guarantees

Goal Derive an alternative representation of the minimal L^{2}-distance
Y

$$
\min _{f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{2}}\|Y-f(X)\|_{2}=\|Y-\mathbb{E}[Y \mid X]\|_{2}
$$

Assumption $\quad Y$ is of the form $Y=h(X, V)$ for a known function $h: \mathbb{R}^{d+k} \rightarrow \mathbb{R}$ and a k-dim random vector V independent of X

Computation of Conditional Expectations with Guarantees

Goal Derive an alternative representation of the minimal L^{2}-distance

$$
\min _{f: \mathbb{R}^{d} \rightarrow \mathbb{R}}\|Y-f(X)\|_{2}=\|Y-\mathbb{E}[Y \mid X]\|_{2}
$$

Assumption Y is of the form $Y=h(X, V)$ for a known function $h: \mathbb{R}^{d+k} \rightarrow \mathbb{R}$ and a k-dim random vector V independent of X

Define

$$
Z=h(X, \tilde{V}) \text { for an independent copy } \tilde{V} \text { of } V
$$

Computation of Conditional Expectations with Guarantees

Goal Derive an alternative representation of the minimal L^{2}-distance

$$
\min _{f: \mathbb{R}^{d} \rightarrow \mathbb{R}}\|Y-f(X)\|_{2}=\|Y-\mathbb{E}[Y \mid X]\|_{2}
$$

Assumption Y is of the form $Y=h(X, V)$ for a known function $h: \mathbb{R}^{d+k} \rightarrow \mathbb{R}$ and a k-dim random vector V independent of X

Define

$$
Z=h(X, \tilde{V}) \text { for an independent copy } \tilde{V} \text { of } V
$$

Theorem

$$
\|Y-\mathbb{E}[Y \mid X]\|_{2}^{2}=\mathbb{E}[Y(Y-Z)]
$$

- For any candidate regression function $\hat{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ one has

$$
\|Y-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2} \geq\|Y-\mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2}=\mathbb{E}[Y(Y-Z)]
$$

- For any candidate regression function $\hat{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ one has

$$
\|Y-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2} \geq\|Y-\mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2}=\mathbb{E}[Y(Y-Z)]
$$

- By Pythagoras

$$
\|Y-\mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2}+\|\mathbb{E}[Y \mid X]-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}=\|Y-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}
$$

- For any candidate regression function $\hat{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ one has

$$
\|Y-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2} \geq\|Y-\mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2}=\mathbb{E}[Y(Y-Z)]
$$

- By Pythagoras

$$
\|Y-\mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2}+\|\mathbb{E}[Y \mid X]-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}=\|Y-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}
$$

- Therefore

$$
\|\mathbb{E}[Y \mid X]-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}=\|Y-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}-\mathbb{E}[Y(Y-Z)]
$$

- For any candidate regression function $\hat{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ one has

$$
\|Y-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2} \geq\|Y-\mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2}=\mathbb{E}[Y(Y-Z)]
$$

- By Pythagoras

$$
\|Y-\mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2}+\|\mathbb{E}[Y \mid X]-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}=\|Y-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}
$$

- Therefore

\[

\]

- For any candidate regression function $\hat{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ one has

$$
\|Y-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2} \geq\|Y-\mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2}=\mathbb{E}[Y(Y-Z)]
$$

- By Pythagoras

$$
\|Y-\mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2}+\|\mathbb{E}[Y \mid X]-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}=\|Y-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}
$$

- Therefore

$$
\begin{array}{cc}
\|\mathbb{E}[Y \mid X]-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2} & =\|Y-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}-\mathbb{E}[Y(Y-Z)] \\
L^{2} \text {-approximation error } & \text { can be estimated }
\end{array}
$$

- ES_{α} is L^{2} - Lipschitz-continuous: $\left\lvert\, \mathrm{ES}_{\alpha}(f(X))-\mathrm{ES}_{\alpha}\left(\hat{f}(X) \left\lvert\, \leq \frac{1}{1-\alpha}\|f(X)-\hat{f}(X)\|_{L^{2}(\mathbb{P})}\right.\right.\right.$
- For any candidate regression function $\hat{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ one has

$$
\|Y-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2} \geq\|Y-\mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2}=\mathbb{E}[Y(Y-Z)]
$$

- By Pythagoras

$$
\|Y-\mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2}+\|\mathbb{E}[Y \mid X]-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}=\|Y-\hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}
$$

- Therefore

\[

\]

- ES_{α} is L^{2} - Lipschitz-continuous: $\left\lvert\, \mathrm{ES}_{\alpha}(f(X))-\mathrm{ES}_{\alpha}\left(\hat{f}(X) \left\lvert\, \leq \frac{1}{1-\alpha}\|f(X)-\hat{f}(X)\|_{L^{2}(\mathbb{P})}\right.\right.\right.$
- Problem: for $\alpha=0.99, \quad \frac{1}{1-\alpha}=100$

Guarantees for Numerical Approximations

- Numerical approximation $L=f(X) \approx \hat{L}=\hat{f}(X)$

Guarantees for Numerical Approximations

- Numerical approximation $L=f(X) \approx \hat{L}=\hat{f}(X)$
- Denote $\quad \mathbb{P}_{\alpha}=\frac{1}{1-\alpha} 1_{\left\{L \geq \operatorname{Var}_{\alpha}(L)\right\}} \cdot \mathbb{P}, \quad \hat{\mathbb{P}}_{\alpha}=\frac{1}{1-\alpha} 1_{\left\{\hat{L} \geq \operatorname{Var}_{\alpha}(\hat{L})\right\}} \cdot \mathbb{P}$

Guarantees for Numerical Approximations

- Numerical approximation $L=f(X) \approx \hat{L}=\hat{f}(X)$
- Denote

$$
\mathbb{P}_{\alpha}=\frac{1}{1-\alpha} 1_{\left\{L \geq \operatorname{var}_{\alpha}(L)\right\}} \cdot \mathbb{P}, \quad \hat{\mathbb{P}}_{\alpha}=\frac{1}{1-\alpha} 1_{\left\{\hat{L} \geq \operatorname{Var}_{\alpha}(\hat{L})\right\}} \cdot \mathbb{P}
$$

Theorem $\left|\mathrm{ES}_{\alpha}(L)-\mathrm{ES}_{\alpha}(\hat{L})\right| \leq\|L-\hat{L}\|_{L^{2}\left(\mathbb{P}_{\alpha}\right)} \vee\|L-\hat{L}\|_{L^{2}\left(\hat{\mathbb{P}}_{\alpha}\right)}$

Guarantees for Numerical Approximations

- Numerical approximation $L=f(X) \approx \hat{L}=\hat{f}(X)$
- Denote

$$
\mathbb{P}_{\alpha}=\frac{1}{1-\alpha} 1_{\left\{L \geq \operatorname{var}_{\alpha}(L)\right\}} \cdot \mathbb{P}, \quad \hat{\mathbb{P}}_{\alpha}=\frac{1}{1-\alpha} 1_{\left\{\hat{L} \geq \operatorname{Var}_{\alpha}(\hat{L})\right\}} \cdot \mathbb{P}
$$

Theorem $\left|\mathrm{ES}_{\alpha}(L)-\mathrm{ES}_{\alpha}(\hat{L})\right| \leq\|L-\hat{L}\|_{L^{2}\left(\mathbb{P}_{\alpha}\right)} \vee\|L-\hat{L}\|_{L^{2}\left(\hat{\mathbb{P}}_{\alpha}\right)}$ can be estimated

Guarantees for Numerical Approximations

- Numerical approximation $L=f(X) \approx \hat{L}=\hat{f}(X)$
- Denote

$$
\mathbb{P}_{\alpha}=\frac{1}{1-\alpha} 1_{\left\{L \geq \operatorname{var}_{\alpha}(L)\right\}} \cdot \mathbb{P}, \quad \hat{\mathbb{P}}_{\alpha}=\frac{1}{1-\alpha} 1_{\left\{\hat{L} \geq \operatorname{Var}_{\alpha}(\hat{L})\right\}} \cdot \mathbb{P}
$$

Theorem

$$
\left|\mathrm{ES}_{\alpha}(L)-\mathrm{ES}_{\alpha}(\hat{L})\right| \leq\|L-\hat{L}\|_{L^{2}\left(\mathbb{P}_{\alpha}\right)} \vee\|L-\hat{L}\|_{L^{2}\left(\hat{\mathbb{P}}_{\alpha}\right)}
$$

- We assume $\|L-\hat{L}\|_{L^{2}\left(\mathbb{P}_{\alpha}\right)} \approx\|L-\hat{L}\|_{L^{2}\left(\hat{\mathbb{P}}_{\alpha}\right)}$

Numerical Results

	$\widehat{\mathrm{ES}}_{\alpha}(\hat{L})$	error	relative error
Option Portfolio	104.6	± 1.5	$\pm 1.4 \%$
Variable Annuity	142.0	± 1.7	$\pm 1.2 \%$

Thank You!

