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The presentation is based on the paper

On Duration Effects in Non-Life Insurance Pricing

written togheter with Taariq Nazar (Stockholm University), to
appear in the European Actuarial Journal



Background

I Data consists of triplets (Z ,X ,W ), where
I Z corresponds to the response e.g. claim amount,
I X is a vector of covariates,
I W is an exposure weight e.g. policy duration

I Standard GLM assumptions

E[Z | X ,W ] = Wµ(X ), and Var[Z | X ,W ] = Wσ2(X )
(A1)

I ...more specificly: Tweedie

Var[Z | X ,W ] = Wϕµ(X )ξ (A2)

where “ϕ” is the dispersion parameter

I Note that both (A1) and (A2) are linear in W



Background

Remarks

I Parameter estimation: the influence of W under (A1) is not
obvious

I Under (A2): hard to estimate ϕ if µ(X ) is badly specified
(e.g. too rigid)



Background estimation

I Estimation of µ typically based on deviance loss functions,
where the minimum is attained by the maximum likelihood
estimator (MLE)

I We consider Bregman deviance losses
(e.g. Poisson, and Gamma with fixed dispersion, under (A1))

I The deviance function for Y = Z/W can be written as

DBreg(Y , µ) ∝Wd(Y , µ),

where d(Y , µ) is the so-called unit deviance function, see e.g.
Ohlsson & Johansson (2010), Wüthrich & Merz (2023)



Background estimation

I As discussed in Lindholm et al. (2023), the MLE for µ
corresponds to the empirical version of the minimiser

π(X ) ∈ argminf E[Wd(Y , f (X ))], (1)

where the minimisation is over suitable X -measurable
functions f (see ref. for details)

I As shown in Lindholm et al. (2023), the population minimiser
π(X ) is given by

π(X ) =
E[Z | X ]

E[W | X ]
, (2)

which does not assume (A1) and does not rely on any specific
assumptions regarding the dependence between, Z ,X , and W



Background estimation

Remarks

I From (2) it is clear that π(X ) will differ from µ(X ) unless
assumption (A1) is satisfied

I Given a reasonably well specified model, the above suggests
that the MLE will be a consistent estimator of π(X ), which
may, or may not, coincide with µ(X )

I Note that π(X ) corresponds to the duration adjusted
actuarially fair premium, since π(X ) satisfies the relation

E[Wπ(X ) | X ] = E[Z | X ]



Background estimation

Note that

I Consistency relies on that we know that the functional form of
the true model is a GLM (or some other model class)

I In practice the true model is unknown, and a misspecified
model for E[Z | X ] will lead to local bias, see e.g. Lindholm
et al. (2023) and Wüthrich & Ziegel (2023)

I Local bias will contaminate estimation of the dispersion
parameter ϕ



Estimators and asymptotics

Estimators and asymptotics

I Focus will be on estimating the mean function for a specific
covariate vector X = x , without assuming any specific
functional form of µ(X )

I Given sufficiently many observations of X = x , we may
estimate µ(x) as a parameter

I This is a reasonable assumption when we consider the
situation of letting the sample size tend to infinity



Estimators and asymptotics

Proposition 1

Consider an i.i.d. sample (Zi ,Xi ,Wi )
m
i=1 = (Zi , x ,Wi )

m
i=1 and

define Yi := Zi/Wi . The estimator µ̂m(x) that minimises the
duration weighted Bregman deviance is given by

µ̂m(x) =
Êm[Z | X = x ]

Êm[W | X = x ]
,

where

Êm[Z | X = x ] :=
1

m

m∑
i=1

Zi , and Êm[W | X = x ] :=
1

m

m∑
i=1

Wi ,

for which it holds that

µ̂m(x)
p−→ E[Z | X = x ]

E[W | X = x ]
, as m→∞.



Estimators and asymptotics

Remarks (more in the paper)
I Proposition 1 does not assume

I independence between Z and W
I that the true data belongs to an EDF with expectation and

variance being linear in W

I The predictor µ̂m in Proposition 1 is always asymptotically
actuarially fair in the sense of π from (2)

...but π is not guaranteed to equal µ unless (A1) hold!



Estimators and asymptotics

Dispersion modelling

I Above we have seen that E[Z | X ] and E[W | X ] appeared as
limiting objects

I When discussing dispersion and variation we will encounter

Var[Z | X ] = E[Var[Z | X ,W ]] + Var[E[Z | X ,W ]],

or the corresponding expressions under Tweedie assumptions

I We will focus on Pearson estimators of ϕ:

ϕ̂P
m(x) :=

1

m − 1

m∑
i=1

Wi (Yi − µ̂m(x))2

µ̂ξm(x)
(3)

...since there is trouble with consistency of deviance based
estimators, see Lindholm & Nazar (2024)



Estimators and asymptotics

Proposition 2

Given an i.i.d. sample (Zi ,Xi ,Wi )
m
i=1 = (Zi , x ,Wi )

m
i=1 it holds that

ϕ̂P
m(x)

p−→ ϕ∗,P(x) = ϕ(x)− E[W | X = x ]ξ−1

E[Z | X = x ]ξ
Cov

[
Z 2

W
,W

∣∣∣ X = x

]
,

as m→∞, where

ϕ(x) :=
E[W | X = x ]ξ−1 Var[Z | X = x ]

E[Z | X = x ]ξ
. (4)

If the underlying data generating process agrees with moment
assumptions (A1) and (A2) then ϕ∗,P(x) = ϕ(x) and
ϕ(x) > ϕ(x).



Estimators and asymptotics

Remarks

I Observing ϕ̂∗,P(x) ≥ ϕ̂(x) indicates violation of (A1) and
(A2), see Lindholm & Nazar (2024)

→ The same conclusions hold true if we observe ϕ̂∗,P ≥ ϕ̂(x)

I The plug-in variance of Z based on ϕ̂∗,P(x) is only guaranteed
to be consistent under (A1) and (A2), see Lindholm & Nazar
(2024)

→ An alternative to a plug-in variance estimator:

V̂arm[Z | X = x ] :=
1

m − 1

m∑
i=1

(Zi − Êm[W | X = x ]µ̂m(x)︸ ︷︷ ︸
Êm[Z |X=x]

)2

(5)

which is consistent without assuming (A1) and (A2)!



Numerical illustrations

Setup

I Real insurance data: freMTPLfreq, see CASdatasets, and
see Lindholm et al. (2023) for other examples

I Will use a Poisson GBM-model with linear weights in W , all
standard parameters except tree depth, which is set to 2

I Optimal number of trees: 192

Model evaluation

I Use the (µ̂(xi ))ni=1-predictions from the GBM and order these

I This gives us ordered x(i):s such that µ̂(x(i)) corresponds to
the ith largest prediction

I The ordered data set is the split into k = 200 equally sized
bins used to evaluate local performance



Numerical illustrations
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Numerical illustrations

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

percentile

av
er

ag
e 

du
ra

tio
n



Numerical illustrations
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Figure: Dotted line: µ̂(x); Purple dots:

π̂(x) := Ê[Z | X = x ]/Ê[W | X = x ]; Green dots: Ê[Y | X = x ]



Numerical illustrations
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Figure: Blue dots: ϕ̂P(x); Blue line: ϕ̂P; Red dots: ϕ̂(x); Red line:
average of the ϕ̂(x)s



Numerical illustrations
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Figure: Black solid line: duration adjusted plug-in est. of E[Z | X = x ];

Grey dots: Ê[Z | X = x ]; Blue lines: plug-in est. of
√

Var[Z | X = x ];

Red lines:

√
V̂ar[Z | X = x ]; Dashed line: µ̂(x)



Numerical illustrations

Conclusions

I The dependence between Z and W matters in the bias
calculations – supported by real data

I In the real data example the plug-in standard deviation
variance is on average 30% larger than the corresponding
local sample standard deviation using (5)

I This can be compared with that the using√
ϕ̂P ≈

√
1.70 ≈ 1.30 instead of

ϕ̂ = V̂ar[Z | X = x ]/Ê[Z | X = x ] ≈ 1.05

I Analysis “Trick”: use the original predictor for risk ordering,
and use simple sample variance estimators locally
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